Khaled Faisal Qasim, Samar Abdel-Hamied, M. M. El-Desoky
{"title":"Contribution of Ti insertion on nano-crystalline rich oxygen vacancy V2O5’s performance for supercapacitor electrodes","authors":"Khaled Faisal Qasim, Samar Abdel-Hamied, M. M. El-Desoky","doi":"10.1007/s10008-024-06084-1","DOIUrl":null,"url":null,"abstract":"<div><p>The sol–gel film method was employed to produce pure and Ti-doped V<sub>2</sub>O<sub>5</sub> in varying concentrations (1, 2, 3, and 4 mol%). The resulting materials were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS) to assess their crystal structure, morphology, surface characteristics, and elemental composition. XRD results indicated that all samples, whether pure or doped, crystallized in the orthorhombic phase with a preferred orientation along the (101) plane. The introduction of doping reduced the crystallite size, which fell below 10 nm. SEM analysis revealed that the V<sub>2</sub>O<sub>5</sub> appeared as nanosheets. The impact of doping on electrochemical performance was evaluated using galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) in a 1 M LiNO<sub>3</sub> electrolyte. The electrochemical tests demonstrated surface redox pseudocapacitive behavior with reversible charge/discharge capabilities, and specific capacitance values ranged from 254.6 to 352.3 F/g, depending on the sample composition, as determined by CV. The presence of dopants enhanced the electrochemical performance due to the multiple oxidation states of V and Ti, as well as the presence of oxygen vacancies (V<sub>O</sub><sup>··</sup>). Specifically, the 4% Ti-doped V<sub>2</sub>O<sub>5</sub> exhibited a specific capacitance (C<sub>sp</sub>) of 352.3 F/g, energy density (E<sub>d</sub>) of 43.3 Wh/kg, power density (P<sub>d</sub>) of 554.2 W/kg, and maintained 69.1% cycling stability over 10,000 cycles at 1 A/g.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"701 - 715"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06084-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The sol–gel film method was employed to produce pure and Ti-doped V2O5 in varying concentrations (1, 2, 3, and 4 mol%). The resulting materials were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS) to assess their crystal structure, morphology, surface characteristics, and elemental composition. XRD results indicated that all samples, whether pure or doped, crystallized in the orthorhombic phase with a preferred orientation along the (101) plane. The introduction of doping reduced the crystallite size, which fell below 10 nm. SEM analysis revealed that the V2O5 appeared as nanosheets. The impact of doping on electrochemical performance was evaluated using galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) in a 1 M LiNO3 electrolyte. The electrochemical tests demonstrated surface redox pseudocapacitive behavior with reversible charge/discharge capabilities, and specific capacitance values ranged from 254.6 to 352.3 F/g, depending on the sample composition, as determined by CV. The presence of dopants enhanced the electrochemical performance due to the multiple oxidation states of V and Ti, as well as the presence of oxygen vacancies (VO··). Specifically, the 4% Ti-doped V2O5 exhibited a specific capacitance (Csp) of 352.3 F/g, energy density (Ed) of 43.3 Wh/kg, power density (Pd) of 554.2 W/kg, and maintained 69.1% cycling stability over 10,000 cycles at 1 A/g.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.