Solar-driven seawater desalination and electricity generation based on anisotropic graphene aerogel via unidirectional microfluidic transportation

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Colloid and Polymer Science Pub Date : 2024-10-29 DOI:10.1007/s00396-024-05340-0
Junhong Guo, Dong Li, Huanyu Zuo
{"title":"Solar-driven seawater desalination and electricity generation based on anisotropic graphene aerogel via unidirectional microfluidic transportation","authors":"Junhong Guo,&nbsp;Dong Li,&nbsp;Huanyu Zuo","doi":"10.1007/s00396-024-05340-0","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven interface evaporation for steam and electricity co-generation is expected to simultaneously solve the shortage of freshwater and energy. Although many different solar-driven evaporators have been developed, the simultaneously achieving freshwater-electricity cogeneration at a steadily high efficiency remains a challenge. In this work, an anisotropic graphene aerogel (AGA) with vertically aligned microfluidic channels is synthesized by a directional-freezing method. By unidirectionally transporting the saline, the AGA not only shows stable steam generation but also generates continuous electricity due to the formation of an asymmetric electric double-layer. For seawater desalination, the evaporation rate reaches about 2.82 kg m<sup>−2</sup> h<sup>−1</sup> under one sun irradiation. And the evaporation performance has no obvious attenuation after long-term usage due to self-operating salt rejection. During the seawater evaporation, the AGA can generate output voltage of ca. 0.85 V and short-circuit current of 0.01 mA. The AGA has the advantages of strong light absorption, high photothermal conversion ability, low thermal conductivity, low-cost, excellent salt rejection ability, making it very attractive for practical applications. Therefore, this work will provide a new opportunity for simultaneous solar desalination and electricity generation under natural sunlight.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 2","pages":"219 - 228"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05340-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven interface evaporation for steam and electricity co-generation is expected to simultaneously solve the shortage of freshwater and energy. Although many different solar-driven evaporators have been developed, the simultaneously achieving freshwater-electricity cogeneration at a steadily high efficiency remains a challenge. In this work, an anisotropic graphene aerogel (AGA) with vertically aligned microfluidic channels is synthesized by a directional-freezing method. By unidirectionally transporting the saline, the AGA not only shows stable steam generation but also generates continuous electricity due to the formation of an asymmetric electric double-layer. For seawater desalination, the evaporation rate reaches about 2.82 kg m−2 h−1 under one sun irradiation. And the evaporation performance has no obvious attenuation after long-term usage due to self-operating salt rejection. During the seawater evaporation, the AGA can generate output voltage of ca. 0.85 V and short-circuit current of 0.01 mA. The AGA has the advantages of strong light absorption, high photothermal conversion ability, low thermal conductivity, low-cost, excellent salt rejection ability, making it very attractive for practical applications. Therefore, this work will provide a new opportunity for simultaneous solar desalination and electricity generation under natural sunlight.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
期刊最新文献
Investigation of the polymer additive on the lyotropic lamellar phase formed by surfactants with different head groups Synthesis of dual-responsive carboxymethyl cellulose–based nanogels for drug delivery applications Research progress on eco-friendly rubber release agents Crab shell chitosan infusion: optimizing epoxy-polyamide composites membrane for improved mechanical and thermal properties Development and evaluation of folate-gelatin-poloxamer P407 copolymer nanogels for enhanced co-delivery of paclitaxel and curcumin in breast cancer therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1