Self-Assembly of a Conjugate of Lipoic Acid With a Collagen-Stimulating Pentapeptide Showing Cytocompatibility and Wound Healing Properties, and Chemical and Photolytic Disassembly

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Peptide Science Pub Date : 2025-02-04 DOI:10.1002/psc.70002
Lucas R. de Mello, Valeria Castelletto, Leide Cavalcanti, Jani Seitsonen, Ian W. Hamley
{"title":"Self-Assembly of a Conjugate of Lipoic Acid With a Collagen-Stimulating Pentapeptide Showing Cytocompatibility and Wound Healing Properties, and Chemical and Photolytic Disassembly","authors":"Lucas R. de Mello,&nbsp;Valeria Castelletto,&nbsp;Leide Cavalcanti,&nbsp;Jani Seitsonen,&nbsp;Ian W. Hamley","doi":"10.1002/psc.70002","DOIUrl":null,"url":null,"abstract":"<p>Lipoic acid is a biocompatible compound with antioxidant activity that is of considerable interest in cosmetic formulations, and the disulfide group in the N-terminal ring confers redox activity. Here, we study the self-assembly and aspects of the bioactivity of a lipopeptide (peptide amphiphile) comprising the KTTKS collagen-stimulating pentapeptide sequence conjugated to an N-terminal lipoic acid chain, lipoyl-KTTKS. Using SAXS, SANS and cryo-TEM, lipoyl-KTTKS is found to form a population of curly fibrils (wormlike micelles) above a critical aggregation concentration. Upon chemical reduction, the fibrils (and β-sheet structure) are disrupted because of the breaking of the disulfide bond, which produces dihydrolipoic acid. Lipoyl-KTTKS also undergoes photo-degradation in the presence of UV radiation. Through cell assays using fibroblasts, we found that lipoyl-KTTKS has excellent cytocompatibility across a wide concentration range, stimulates collagen production, and enhances the rate of cell coverage in a simple in vitro scratch assay of ‘wound healing’. Lipoyl-KTTKS thus has several notable properties that may be useful for the development of cosmetics, cell scaffolds or tissue engineering materials.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipoic acid is a biocompatible compound with antioxidant activity that is of considerable interest in cosmetic formulations, and the disulfide group in the N-terminal ring confers redox activity. Here, we study the self-assembly and aspects of the bioactivity of a lipopeptide (peptide amphiphile) comprising the KTTKS collagen-stimulating pentapeptide sequence conjugated to an N-terminal lipoic acid chain, lipoyl-KTTKS. Using SAXS, SANS and cryo-TEM, lipoyl-KTTKS is found to form a population of curly fibrils (wormlike micelles) above a critical aggregation concentration. Upon chemical reduction, the fibrils (and β-sheet structure) are disrupted because of the breaking of the disulfide bond, which produces dihydrolipoic acid. Lipoyl-KTTKS also undergoes photo-degradation in the presence of UV radiation. Through cell assays using fibroblasts, we found that lipoyl-KTTKS has excellent cytocompatibility across a wide concentration range, stimulates collagen production, and enhances the rate of cell coverage in a simple in vitro scratch assay of ‘wound healing’. Lipoyl-KTTKS thus has several notable properties that may be useful for the development of cosmetics, cell scaffolds or tissue engineering materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
期刊最新文献
Assessment of Phage-Displayed Peptides Targeting Cancer Cell Surface Proteins: A Comprehensive Molecular Docking Study Self-Assembly of a Conjugate of Lipoic Acid With a Collagen-Stimulating Pentapeptide Showing Cytocompatibility and Wound Healing Properties, and Chemical and Photolytic Disassembly The Prototypical Oligopeptide Transporter YdgR From E. coli Exhibits a Strict Preference for β-Ala-Lys(AMCA) Investigation of the Potency of KALA and REV Cell-Penetrating Peptides for In Vitro/In Vivo Delivery of an HPV Multiepitope DNA Construct Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1