{"title":"Numerical Study on the Effect of the Combined Radial Flow Field on the Performance of Proton Exchange Membrane Fuel Cells","authors":"Weidong Wu, Yuan Chen, Zongming Huang, Menghan Li, Xiaori Liu, Zhonghao Rao","doi":"10.1002/fuce.202400067","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As the flow field structure has a crucial influence on the performance of the proton exchange membrane fuel cell, in this research, the radial flow field R-0 is designed and optimized based on the characteristics of the annular serpentine and annular flow channels to form combined flow field structure (R-1 to R-5). Subsequently, a three-dimensional and two-phase model is established and the effects of each flow field on the cell performance are numerically investigated. Results indicate that the R-0 can enhance the gas vertical velocity on the diffusion-catalyst interface compared to the parallel flow field, which increases the effective concentration of reaction gases within the catalyst layer, thereby accelerating the electrochemical reaction rate, and the performance of the combined flow fields is further improved. In addition, the effect of the percentage of annular serpentine within the combined flow field on the concentration distribution, uniformity, and output performance is analyzed. Results indicate that increasing the percentage of annular serpentine structure can increase the pressure between adjacent channels, and thus the higher pressure and concentration gradient generated can enhance the gas transport and reduce the water accumulation under the ribs thus effectively improving the cell performance.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
As the flow field structure has a crucial influence on the performance of the proton exchange membrane fuel cell, in this research, the radial flow field R-0 is designed and optimized based on the characteristics of the annular serpentine and annular flow channels to form combined flow field structure (R-1 to R-5). Subsequently, a three-dimensional and two-phase model is established and the effects of each flow field on the cell performance are numerically investigated. Results indicate that the R-0 can enhance the gas vertical velocity on the diffusion-catalyst interface compared to the parallel flow field, which increases the effective concentration of reaction gases within the catalyst layer, thereby accelerating the electrochemical reaction rate, and the performance of the combined flow fields is further improved. In addition, the effect of the percentage of annular serpentine within the combined flow field on the concentration distribution, uniformity, and output performance is analyzed. Results indicate that increasing the percentage of annular serpentine structure can increase the pressure between adjacent channels, and thus the higher pressure and concentration gradient generated can enhance the gas transport and reduce the water accumulation under the ribs thus effectively improving the cell performance.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.