Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Fuel Cells Pub Date : 2024-12-15 DOI:10.1002/fuce.202400158
Linda Ney, Nikolas Seidl, Rajveer Singh, Patrick Schneider, Dominik Stross, Andreas Göppentin, Sebastian Tepner, Matthias Klingele, Roman Keding
{"title":"Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production","authors":"Linda Ney,&nbsp;Nikolas Seidl,&nbsp;Rajveer Singh,&nbsp;Patrick Schneider,&nbsp;Dominik Stross,&nbsp;Andreas Göppentin,&nbsp;Sebastian Tepner,&nbsp;Matthias Klingele,&nbsp;Roman Keding","doi":"10.1002/fuce.202400158","DOIUrl":null,"url":null,"abstract":"<p>Current state-of-the-art coating techniques for PEM fuel cell electrode manufacturing such as slot-die coating use closed ink reservoirs, allowing low boiling point solvents as the dispersion matrix for solid components of the catalyst ink. Applying such low boiling point inks to printing methods that expose catalyst inks to air, like flatbed screen printing, results in an instable and nonscalable production process due to the successive evaporation of these solvents. Within this study, a total of 12 different solvents are examined for process stability and electrochemical performance when applied with flatbed screen printing. Ink characteristics, such as contact angle, rheology, and sedimentation experiments, are quantified to reveal the most suitable set of solvents, enabling the use of open-reservoir printing methods like flatbed screen printing. Additionally, electrochemical in situ characterization of catalyst-coated membranes showed that 1,2-propanediol and 1-heptanol are solvents that combine process stability with high fuel cell performance.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400158","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Current state-of-the-art coating techniques for PEM fuel cell electrode manufacturing such as slot-die coating use closed ink reservoirs, allowing low boiling point solvents as the dispersion matrix for solid components of the catalyst ink. Applying such low boiling point inks to printing methods that expose catalyst inks to air, like flatbed screen printing, results in an instable and nonscalable production process due to the successive evaporation of these solvents. Within this study, a total of 12 different solvents are examined for process stability and electrochemical performance when applied with flatbed screen printing. Ink characteristics, such as contact angle, rheology, and sedimentation experiments, are quantified to reveal the most suitable set of solvents, enabling the use of open-reservoir printing methods like flatbed screen printing. Additionally, electrochemical in situ characterization of catalyst-coated membranes showed that 1,2-propanediol and 1-heptanol are solvents that combine process stability with high fuel cell performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
期刊最新文献
Effects of Initial Water Content of Membrane on Cold Start Performance of PEMFC An Integrated Heat Recovery System Design for a Fuel Cell Buggy With Hydrogen Preheating and Thermoelectric Generator Activity–Stability Relationship in Compositionally Tuned Magnetron Co-Sputtered Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells Numerical Study on the Effect of the Combined Radial Flow Field on the Performance of Proton Exchange Membrane Fuel Cells Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1