Exploiting metabolic vulnerability in glioblastoma using a brain-penetrant drug with a safe profile.

IF 9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EMBO Molecular Medicine Pub Date : 2025-02-03 DOI:10.1038/s44321-025-00195-6
Audrey Burban, Cloe Tessier, Mathieu Larroquette, Joris Guyon, Cloe Lubiato, Mathis Pinglaut, Maxime Toujas, Johanna Galvis, Benjamin Dartigues, Emmanuelle Georget, H Artee Luchman, Samuel Weiss, David Cappellen, Nathalie Nicot, Barbara Klink, Macha Nikolski, Lucie Brisson, Thomas Mathivet, Andreas Bikfalvi, Thomas Daubon, Ahmad Sharanek
{"title":"Exploiting metabolic vulnerability in glioblastoma using a brain-penetrant drug with a safe profile.","authors":"Audrey Burban, Cloe Tessier, Mathieu Larroquette, Joris Guyon, Cloe Lubiato, Mathis Pinglaut, Maxime Toujas, Johanna Galvis, Benjamin Dartigues, Emmanuelle Georget, H Artee Luchman, Samuel Weiss, David Cappellen, Nathalie Nicot, Barbara Klink, Macha Nikolski, Lucie Brisson, Thomas Mathivet, Andreas Bikfalvi, Thomas Daubon, Ahmad Sharanek","doi":"10.1038/s44321-025-00195-6","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma is one of the most treatment-resistant and lethal cancers, with a subset of self-renewing brain tumour stem cells (BTSCs), driving therapy resistance and relapse. Here, we report that mubritinib effectively impairs BTSC stemness and growth. Mechanistically, bioenergetic assays and rescue experiments showed that mubritinib targets complex I of the electron transport chain, thereby impairing BTSC self-renewal and proliferation. Gene expression profiling and Western blot analysis revealed that mubritinib disrupts the AMPK/p27<sup>Kip1</sup> pathway, leading to cell-cycle impairment. By employing in vivo pharmacokinetic assays, we established that mubritinib crosses the blood-brain barrier. Using preclinical patient-derived and syngeneic models, we demonstrated that mubritinib delays glioblastoma progression and extends animal survival. Moreover, combining mubritinib with radiotherapy or chemotherapy offers survival advantage to animals. Notably, we showed that mubritinib alleviates hypoxia, thereby enhancing ROS generation, DNA damage, and apoptosis in tumours when combined with radiotherapy. Encouragingly, toxicological and behavioural studies revealed that mubritinib is well tolerated and spares normal cells. Our findings underscore the promising therapeutic potential of mubritinib, warranting its further exploration in clinic for glioblastoma therapy.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00195-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma is one of the most treatment-resistant and lethal cancers, with a subset of self-renewing brain tumour stem cells (BTSCs), driving therapy resistance and relapse. Here, we report that mubritinib effectively impairs BTSC stemness and growth. Mechanistically, bioenergetic assays and rescue experiments showed that mubritinib targets complex I of the electron transport chain, thereby impairing BTSC self-renewal and proliferation. Gene expression profiling and Western blot analysis revealed that mubritinib disrupts the AMPK/p27Kip1 pathway, leading to cell-cycle impairment. By employing in vivo pharmacokinetic assays, we established that mubritinib crosses the blood-brain barrier. Using preclinical patient-derived and syngeneic models, we demonstrated that mubritinib delays glioblastoma progression and extends animal survival. Moreover, combining mubritinib with radiotherapy or chemotherapy offers survival advantage to animals. Notably, we showed that mubritinib alleviates hypoxia, thereby enhancing ROS generation, DNA damage, and apoptosis in tumours when combined with radiotherapy. Encouragingly, toxicological and behavioural studies revealed that mubritinib is well tolerated and spares normal cells. Our findings underscore the promising therapeutic potential of mubritinib, warranting its further exploration in clinic for glioblastoma therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶质母细胞瘤是最具治疗耐药性和致命性的癌症之一,其自我更新的脑肿瘤干细胞(BTSC)是导致耐药和复发的原因。在这里,我们报告了mubritinib能有效抑制BTSC的干性和生长。从机理上讲,生物能测定和拯救实验表明,mubritinib靶向电子传递链的复合物I,从而损害了BTSC的自我更新和增殖。基因表达谱和Western印迹分析表明,mubritinib破坏了AMPK/p27Kip1通路,导致细胞周期受损。通过采用体内药代动力学实验,我们确定了mubritinib能穿过血脑屏障。通过使用临床前患者衍生模型和合成模型,我们证明了 mubritinib 能延缓胶质母细胞瘤的进展并延长动物的生存期。此外,将姆布利替尼与放疗或化疗结合使用可为动物带来生存优势。值得注意的是,我们发现在与放疗联合使用时,mubritinib能缓解缺氧,从而增强ROS生成、DNA损伤和肿瘤细胞凋亡。令人鼓舞的是,毒理学和行为学研究表明,mubritinib具有良好的耐受性,并能保护正常细胞。我们的研究结果凸显了mubritinib的治疗潜力,值得在临床上进一步探索胶质母细胞瘤的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
期刊最新文献
An AI-assisted morphoproteomic approach is a supportive tool in esophagitis-related precision medicine. Exploiting metabolic vulnerability in glioblastoma using a brain-penetrant drug with a safe profile. Boosting human immunology: harnessing the potential of immune organoids. Exposomics: a review of methodologies, applications, and future directions in molecular medicine. FABP4 as a therapeutic host target controlling SARS-CoV-2 infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1