Endogenous H2S promotes Arabidopsis flowering through the regulation of GA20ox4 in the gibberellin pathway.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70084
Lijuan Xuan, Yongke Tian, Xiaoyan Chen, Le Gao, Meng Wang, Haijun Wu
{"title":"Endogenous H<sub>2</sub>S promotes Arabidopsis flowering through the regulation of GA20ox4 in the gibberellin pathway.","authors":"Lijuan Xuan, Yongke Tian, Xiaoyan Chen, Le Gao, Meng Wang, Haijun Wu","doi":"10.1111/ppl.70084","DOIUrl":null,"url":null,"abstract":"<p><p>Flowering time is a critical determinant of plant reproductive success and agricultural yield. Hydrogen sulfide (H₂S), as a signaling molecule, regulates various aspects of plant growth and development. In this study, we examined the role of endogenous H₂S in regulating flowering time in Arabidopsis. The O-acetylserine thiol lyase a1 (oasa1) mutant, which has elevated H₂S levels due to impaired OASA1 activity that catalyzes the synthesis of Cys from H<sub>2</sub>S, flowers earlier than wild type (WT). The OASA1 overexpression lines (OE-OASA1-#33/#142), characterized by reduced H₂S levels, show delayed flowering, accompanied by decreased expression of key flowering regulators, FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), and AGAMOUS-LIKE24 (AGL24). Notably, vernalization and short-day (SD) conditions did not affect their flowering patterns. Exogenous H₂S and GA₃ treatment rescued the delayed flowering phenotype of OE-OASA1-#33/#142. In oasa1, levels of GA intermediates (GA<sub>15</sub> and GA<sub>53</sub>) were elevated, while their levels were reduced in OE-OASA1-#33/#142. RT-qPCR analysis showed a significant reduction in the expression of GIBBERELLIN 20-OXIDASE 4 (GA20ox4) in OE-OASA1-#33/#142 compared to WT. Overexpression of GA20ox4 (OE-GA20ox4-#20/#30) resulted in earlier flowering and partially rescued the delayed flowering phenotype of OE-OASA1-#33/#142. Additionally, the expression of age pathway-related genes, including miRNA172b and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3/4/5/9/15 (SPL3/4/5/9/15), was significantly reduced in OE-OASA1-#33/#142 seedlings. These findings suggest that endogenous H₂S positively regulates GA20ox4 expression, thereby promoting gibberellin synthesis and advancing flowering in Arabidopsis through the GA pathway. Furthermore, the promotion of flowering by H₂S appears to be linked to the age pathway.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70084"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70084","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flowering time is a critical determinant of plant reproductive success and agricultural yield. Hydrogen sulfide (H₂S), as a signaling molecule, regulates various aspects of plant growth and development. In this study, we examined the role of endogenous H₂S in regulating flowering time in Arabidopsis. The O-acetylserine thiol lyase a1 (oasa1) mutant, which has elevated H₂S levels due to impaired OASA1 activity that catalyzes the synthesis of Cys from H2S, flowers earlier than wild type (WT). The OASA1 overexpression lines (OE-OASA1-#33/#142), characterized by reduced H₂S levels, show delayed flowering, accompanied by decreased expression of key flowering regulators, FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), and AGAMOUS-LIKE24 (AGL24). Notably, vernalization and short-day (SD) conditions did not affect their flowering patterns. Exogenous H₂S and GA₃ treatment rescued the delayed flowering phenotype of OE-OASA1-#33/#142. In oasa1, levels of GA intermediates (GA15 and GA53) were elevated, while their levels were reduced in OE-OASA1-#33/#142. RT-qPCR analysis showed a significant reduction in the expression of GIBBERELLIN 20-OXIDASE 4 (GA20ox4) in OE-OASA1-#33/#142 compared to WT. Overexpression of GA20ox4 (OE-GA20ox4-#20/#30) resulted in earlier flowering and partially rescued the delayed flowering phenotype of OE-OASA1-#33/#142. Additionally, the expression of age pathway-related genes, including miRNA172b and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3/4/5/9/15 (SPL3/4/5/9/15), was significantly reduced in OE-OASA1-#33/#142 seedlings. These findings suggest that endogenous H₂S positively regulates GA20ox4 expression, thereby promoting gibberellin synthesis and advancing flowering in Arabidopsis through the GA pathway. Furthermore, the promotion of flowering by H₂S appears to be linked to the age pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species. The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1. Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1