Taher Meydando, Amir Abdolhosseinzadeh, Emine Goktepe, Milorad V. Milošević, Nazli Donmezer
{"title":"Laser-induced thermal size effects in micro-Raman thermal conductivity measurements","authors":"Taher Meydando, Amir Abdolhosseinzadeh, Emine Goktepe, Milorad V. Milošević, Nazli Donmezer","doi":"10.1063/5.0250249","DOIUrl":null,"url":null,"abstract":"Thermal conductivity measurements of submicrometer structures are at the core of the efficient power design of semiconductor devices. Micro-Raman spectroscopy measures thermal conductivity in a fast, nondestructive, and non-contact manner. However, the focused laser heating in micro-Raman experiments may cause drastic thermal size effects. To date, the role of such effects in the accuracy and limitations of the measurement has not been addressed. Here, we present an advanced thermal model to capture the role of material properties, laser power, and film thickness in the thermal size effects, based on the three-dimensional (3D) gray phonon Boltzmann transport equation. Recalling that laser-induced thermal size effects can lead to unexpectedly high local temperatures, even damaging the measured materials, our advanced 3D model gains particular importance for the accurate measurements of directional thermal conductivities in submicrometer structures using future high-resolution optical pump–probe techniques.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"48 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250249","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal conductivity measurements of submicrometer structures are at the core of the efficient power design of semiconductor devices. Micro-Raman spectroscopy measures thermal conductivity in a fast, nondestructive, and non-contact manner. However, the focused laser heating in micro-Raman experiments may cause drastic thermal size effects. To date, the role of such effects in the accuracy and limitations of the measurement has not been addressed. Here, we present an advanced thermal model to capture the role of material properties, laser power, and film thickness in the thermal size effects, based on the three-dimensional (3D) gray phonon Boltzmann transport equation. Recalling that laser-induced thermal size effects can lead to unexpectedly high local temperatures, even damaging the measured materials, our advanced 3D model gains particular importance for the accurate measurements of directional thermal conductivities in submicrometer structures using future high-resolution optical pump–probe techniques.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.