Zhou Xing, Suxiang Ma, Bin-Wen Chen, Mingwei An, Ajuan Fan, Xinqiong Hu, Yang Wang, Lin-Long Deng, Qiufeng Huang, Hiroyuki Kanda, Fahad Gallab Al-Amri, Gainluca Pozzi, Yi Zhang, Jianxing Xia, Jiazhen Wu, Xugang Guo, Mohammad Khaja Nazeeruddin
{"title":"Solubilizing and stabilizing C60 with n-type polymer enables efficient inverted perovskite solar cells","authors":"Zhou Xing, Suxiang Ma, Bin-Wen Chen, Mingwei An, Ajuan Fan, Xinqiong Hu, Yang Wang, Lin-Long Deng, Qiufeng Huang, Hiroyuki Kanda, Fahad Gallab Al-Amri, Gainluca Pozzi, Yi Zhang, Jianxing Xia, Jiazhen Wu, Xugang Guo, Mohammad Khaja Nazeeruddin","doi":"10.1016/j.joule.2024.101817","DOIUrl":null,"url":null,"abstract":"Pristine fullerene C<sub>60</sub> is currently the best-performing electron transport layer (ETL) for perovskite solar cells (PSCs) but suffers from significant aggregation in solution. Consequently, the high-cost and complex thermal evaporation method is typically used to deposit high-quality C<sub>60</sub> ETLs. To address this challenge, we introduce an n-type polymeric additive that can solubilize and stabilize C<sub>60</sub> molecules for solution processing, leading to efficient and stable solution-processed-C<sub>60</sub> (SP-C<sub>60</sub>) ETLs. The achievement is attributed to the well-matched properties of the n-type polymer and the precisely controlled intermolecular interactions between the polymer and C<sub>60</sub>. As a result, the SP-C<sub>60</sub> ETL with 5-wt % polymer addition afforded a champion power conversion efficiency of 25.60% (certified 25.09%). This is not only the highest performance among the current SP-C<sub>60</sub> devices but also highly competitive to the state-of-the-art thermally evaporated C<sub>60</sub> devices. Importantly, the champion device showed significantly enhanced stability (<em>T</em><sub>95, light</sub> > 1,800 h; <em>T</em><sub>80, heat</sub> = 700 h).","PeriodicalId":343,"journal":{"name":"Joule","volume":"61 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.101817","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pristine fullerene C60 is currently the best-performing electron transport layer (ETL) for perovskite solar cells (PSCs) but suffers from significant aggregation in solution. Consequently, the high-cost and complex thermal evaporation method is typically used to deposit high-quality C60 ETLs. To address this challenge, we introduce an n-type polymeric additive that can solubilize and stabilize C60 molecules for solution processing, leading to efficient and stable solution-processed-C60 (SP-C60) ETLs. The achievement is attributed to the well-matched properties of the n-type polymer and the precisely controlled intermolecular interactions between the polymer and C60. As a result, the SP-C60 ETL with 5-wt % polymer addition afforded a champion power conversion efficiency of 25.60% (certified 25.09%). This is not only the highest performance among the current SP-C60 devices but also highly competitive to the state-of-the-art thermally evaporated C60 devices. Importantly, the champion device showed significantly enhanced stability (T95, light > 1,800 h; T80, heat = 700 h).
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.