{"title":"Drivers and mechanisms contributing to excess warming in Europe during recent decades","authors":"Buwen Dong, Rowan T. Sutton","doi":"10.1038/s41612-025-00930-3","DOIUrl":null,"url":null,"abstract":"<p>Over the period 1979-2022, European surface air temperatures warmed around three times as fast as the global mean temperatures in both winter and summer. Here we define “excess” European warming as the difference between the rate of European regional warming and the rate of global warming and investigate the causes. Using a simple observation-based method, we estimate that around 40% ± 39% (in winter) and 29% ± 10% (in summer) of excess European warming is “dynamical” - attributable to changes in atmospheric circulation. We show that the rate of European warming simulated in CMIP6 models compares well with the observations, but only because these models warm too fast in the global mean; excess European warming is underestimated, particularly in winter. The CMIP6 models simulate well the magnitude of the thermodynamic component of excess European warming since 1979 in both winter and summer, they suggest only a weak dynamical contribution in the multi-model mean. The models suggest greenhouse gas-induced warming made the largest contribution to excess thermodynamic warming in winter, whereas changes in anthropogenic aerosols made the largest contribution in summer. They also imply a substantially reduced future rate of excess European warming in summer. However, the failure of current models to simulate observed circulation trends (either as a forced response or as a combination of forced response and internal variability) also implies large uncertainty in future rates of European warming.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"61 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00930-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Over the period 1979-2022, European surface air temperatures warmed around three times as fast as the global mean temperatures in both winter and summer. Here we define “excess” European warming as the difference between the rate of European regional warming and the rate of global warming and investigate the causes. Using a simple observation-based method, we estimate that around 40% ± 39% (in winter) and 29% ± 10% (in summer) of excess European warming is “dynamical” - attributable to changes in atmospheric circulation. We show that the rate of European warming simulated in CMIP6 models compares well with the observations, but only because these models warm too fast in the global mean; excess European warming is underestimated, particularly in winter. The CMIP6 models simulate well the magnitude of the thermodynamic component of excess European warming since 1979 in both winter and summer, they suggest only a weak dynamical contribution in the multi-model mean. The models suggest greenhouse gas-induced warming made the largest contribution to excess thermodynamic warming in winter, whereas changes in anthropogenic aerosols made the largest contribution in summer. They also imply a substantially reduced future rate of excess European warming in summer. However, the failure of current models to simulate observed circulation trends (either as a forced response or as a combination of forced response and internal variability) also implies large uncertainty in future rates of European warming.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.