Preserving and combining knowledge in robotic lifelong reinforcement learning

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2025-02-05 DOI:10.1038/s42256-025-00983-2
Yuan Meng, Zhenshan Bing, Xiangtong Yao, Kejia Chen, Kai Huang, Yang Gao, Fuchun Sun, Alois Knoll
{"title":"Preserving and combining knowledge in robotic lifelong reinforcement learning","authors":"Yuan Meng, Zhenshan Bing, Xiangtong Yao, Kejia Chen, Kai Huang, Yang Gao, Fuchun Sun, Alois Knoll","doi":"10.1038/s42256-025-00983-2","DOIUrl":null,"url":null,"abstract":"<p>Humans can continually accumulate knowledge and develop increasingly complex behaviours and skills throughout their lives, which is a capability known as ‚Äòlifelong learning‚Äô. Although this lifelong learning capability is considered an essential mechanism that makes up general intelligence, recent advancements in artificial intelligence predominantly excel in narrow, specialized domains and generally lack this lifelong learning capability. Here we introduce a robotic lifelong reinforcement learning framework that addresses this gap by developing a knowledge space inspired by the Bayesian non-parametric domain. In addition, we enhance the agent‚Äôs semantic understanding of tasks by integrating language embeddings into the framework. Our proposed embodied agent can consistently accumulate knowledge from a continuous stream of one-time feeding tasks. Furthermore, our agent can tackle challenging real-world long-horizon tasks by combining and reapplying its acquired knowledge from the original tasks stream. The proposed framework advances our understanding of the robotic lifelong learning process and may inspire the development of more broadly applicable intelligence.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"79 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-00983-2","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Humans can continually accumulate knowledge and develop increasingly complex behaviours and skills throughout their lives, which is a capability known as ‘lifelong learning’. Although this lifelong learning capability is considered an essential mechanism that makes up general intelligence, recent advancements in artificial intelligence predominantly excel in narrow, specialized domains and generally lack this lifelong learning capability. Here we introduce a robotic lifelong reinforcement learning framework that addresses this gap by developing a knowledge space inspired by the Bayesian non-parametric domain. In addition, we enhance the agent’s semantic understanding of tasks by integrating language embeddings into the framework. Our proposed embodied agent can consistently accumulate knowledge from a continuous stream of one-time feeding tasks. Furthermore, our agent can tackle challenging real-world long-horizon tasks by combining and reapplying its acquired knowledge from the original tasks stream. The proposed framework advances our understanding of the robotic lifelong learning process and may inspire the development of more broadly applicable intelligence.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
The promise of generative AI for suicide prevention in India Discovering fully semantic representations via centroid- and orientation-aware feature learning Preserving and combining knowledge in robotic lifelong reinforcement learning Why the carbon footprint of generative large language models alone will not help us assess their sustainability A unified cross-attention model for predicting antigen binding specificity to both HLA and TCR molecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1