Jaehoon Cha, Jinhae Park, Samuel Pinilla, Kyle L. Morris, Christopher S. Allen, Mark I. Wilkinson, Jeyan Thiyagalingam
{"title":"Discovering fully semantic representations via centroid- and orientation-aware feature learning","authors":"Jaehoon Cha, Jinhae Park, Samuel Pinilla, Kyle L. Morris, Christopher S. Allen, Mark I. Wilkinson, Jeyan Thiyagalingam","doi":"10.1038/s42256-024-00978-5","DOIUrl":null,"url":null,"abstract":"<p>Learning meaningful representations of images in scientific domains that are robust to variations in centroids and orientations remains an important challenge. Here we introduce centroid- and orientation-aware disentangling autoencoder (CODAE), an encoder–decoder-based neural network that learns meaningful content of objects in a latent space. Specifically, a combination of a translation- and rotation-equivariant encoder, Euler encoding and an image moment loss enables CODAE to extract features invariant to positions and orientations of objects of interest from randomly translated and rotated images. We evaluate this approach on several publicly available scientific datasets, including protein images from life sciences, four-dimensional scanning transmission electron microscopy data from material science and galaxy images from astronomy. The evaluation shows that CODAE learns centroids, orientations and their invariant features and outputs, as well as aligned reconstructions and the exact view reconstructions of the input images with high quality.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"15 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00978-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Learning meaningful representations of images in scientific domains that are robust to variations in centroids and orientations remains an important challenge. Here we introduce centroid- and orientation-aware disentangling autoencoder (CODAE), an encoder–decoder-based neural network that learns meaningful content of objects in a latent space. Specifically, a combination of a translation- and rotation-equivariant encoder, Euler encoding and an image moment loss enables CODAE to extract features invariant to positions and orientations of objects of interest from randomly translated and rotated images. We evaluate this approach on several publicly available scientific datasets, including protein images from life sciences, four-dimensional scanning transmission electron microscopy data from material science and galaxy images from astronomy. The evaluation shows that CODAE learns centroids, orientations and their invariant features and outputs, as well as aligned reconstructions and the exact view reconstructions of the input images with high quality.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.