Xiangxiang Zhang , Shaoyan Wu , Chengyu Liu , Shanjie Su
{"title":"An experimental investigation into the effect of liquid nitrogen cooling on fracture behaviors of bedding shale","authors":"Xiangxiang Zhang , Shaoyan Wu , Chengyu Liu , Shanjie Su","doi":"10.1016/j.tafmec.2025.104844","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid nitrogen (LN<sub>2</sub>) fracturing has been proposed to be used in unconventional gas engineering, including shale reservoirs. However, the effect of LN<sub>2</sub> cooling on the fracture behaviors of bedding shale has not been well studied. In this study, three-point bending tests were conducted on shale samples at room temperature and under LN<sub>2</sub> cooling condition, respectively. Different bedding angles were considered in these tests. The phenomenon of acoustic emission was monitored during the fracture initiation and propagation of bedding shale. The results showed that the tensile strength, fracture toughness, bending elastic modulus and fracture energy decreased with the increase of bedding angle under the same temperature condition, but the bedding angle has no significant effect on energy storage ratio and speed. There was a linear relationship between the tensile strength and fracture toughness of bedding shale. The crack initiation was inconsistent with the loading reference line except in 90° bedding shale, and then turned to the direction parallel to the loading reference line, resulting in various fracture morphology of bedding shale. The acoustic emission signals were mainly concentrated in the failure stage because of the severe brittleness of bedding shale. Under LN<sub>2</sub> cooling condition, the tensile strength, fracture toughness, bending elastic modulus, energy storage ratio, fracture energy and AE cumulative ringing counts of bedding shale with the same bedding angle significantly increased, but the energy storage speed decreased. The crack length along bedding direction was longer and the crack inflection point was clearer than those of bedding shale at room temperature.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"136 ","pages":"Article 104844"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225000023","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid nitrogen (LN2) fracturing has been proposed to be used in unconventional gas engineering, including shale reservoirs. However, the effect of LN2 cooling on the fracture behaviors of bedding shale has not been well studied. In this study, three-point bending tests were conducted on shale samples at room temperature and under LN2 cooling condition, respectively. Different bedding angles were considered in these tests. The phenomenon of acoustic emission was monitored during the fracture initiation and propagation of bedding shale. The results showed that the tensile strength, fracture toughness, bending elastic modulus and fracture energy decreased with the increase of bedding angle under the same temperature condition, but the bedding angle has no significant effect on energy storage ratio and speed. There was a linear relationship between the tensile strength and fracture toughness of bedding shale. The crack initiation was inconsistent with the loading reference line except in 90° bedding shale, and then turned to the direction parallel to the loading reference line, resulting in various fracture morphology of bedding shale. The acoustic emission signals were mainly concentrated in the failure stage because of the severe brittleness of bedding shale. Under LN2 cooling condition, the tensile strength, fracture toughness, bending elastic modulus, energy storage ratio, fracture energy and AE cumulative ringing counts of bedding shale with the same bedding angle significantly increased, but the energy storage speed decreased. The crack length along bedding direction was longer and the crack inflection point was clearer than those of bedding shale at room temperature.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.