Gerardo E. Oleaga , Brigit Mittelman , Zohar Yosibash
{"title":"Insights on kinked cracks under mode III","authors":"Gerardo E. Oleaga , Brigit Mittelman , Zohar Yosibash","doi":"10.1016/j.tafmec.2024.104839","DOIUrl":null,"url":null,"abstract":"<div><div>A parent flat crack under pure mode III kinks in subsequent crack nucleation. It fragments leaving a complex crack nucleation pattern of facets on the fracture surface. However, the energy release rate (ERR), erroneously predicts a crack nucleation path along the original flat surface (similarly to mode I loading) (Mittelman and Yosibash, 2015), contradicting experimental observations.</div><div>We consider here a surrogate simplified problem for a possible reconciliation of the ERR prediction leading to the fragmented surface: the Laplace equation in a circular 2D domain with a crack. This problem represents the cross-section of a 3D circular bar with a <em>longitudinal crack</em> under mode III. An asymptotic analysis demonstrated a maximum ERR resulting from a small crack segment that kinks from the tip of a parent crack when the first non-singular small term in mode III loading is non-zero (Oleaga, 2004, 2006).</div><div>Here we present the asymptotic mathematical analysis and investigate it further by a finite element analysis. We thereafter generalize the mathematical analysis to a small crack nucleating at a V-notched tip and interpret the outcome concerning the elasticity system under pure mode III loading.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"136 ","pages":"Article 104839"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224005895","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A parent flat crack under pure mode III kinks in subsequent crack nucleation. It fragments leaving a complex crack nucleation pattern of facets on the fracture surface. However, the energy release rate (ERR), erroneously predicts a crack nucleation path along the original flat surface (similarly to mode I loading) (Mittelman and Yosibash, 2015), contradicting experimental observations.
We consider here a surrogate simplified problem for a possible reconciliation of the ERR prediction leading to the fragmented surface: the Laplace equation in a circular 2D domain with a crack. This problem represents the cross-section of a 3D circular bar with a longitudinal crack under mode III. An asymptotic analysis demonstrated a maximum ERR resulting from a small crack segment that kinks from the tip of a parent crack when the first non-singular small term in mode III loading is non-zero (Oleaga, 2004, 2006).
Here we present the asymptotic mathematical analysis and investigate it further by a finite element analysis. We thereafter generalize the mathematical analysis to a small crack nucleating at a V-notched tip and interpret the outcome concerning the elasticity system under pure mode III loading.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.