Latitudinal patterns and phosphorus-driven regulation of abundant and rare fungal communities in coastal wetlands

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2025-02-01 DOI:10.1016/j.apsoil.2024.105855
Shaokun Wang , Jing Li , Lijuan Cui , Rumiao Wang , Wei Li , Juntao Wang
{"title":"Latitudinal patterns and phosphorus-driven regulation of abundant and rare fungal communities in coastal wetlands","authors":"Shaokun Wang ,&nbsp;Jing Li ,&nbsp;Lijuan Cui ,&nbsp;Rumiao Wang ,&nbsp;Wei Li ,&nbsp;Juntao Wang","doi":"10.1016/j.apsoil.2024.105855","DOIUrl":null,"url":null,"abstract":"<div><div>Fungal community typically consist of a few abundant and numerous rare taxa, both of which are crucial for supporting plant growth and maintaining ecosystem functions in coastal wetlands. However, the biogeographic patterns and the ecological drivers of abundant and rare fungi remain elusive, hampering our understanding of their functional roles in these ecosystems. Here, we studied the latitudinal patterns of abundant and rare fungi and their determinants via a large-scale investigation (over 2500 km) in coastal wetlands across eastern China. Abundant and rare fungi exhibited distinct latitudinal patterns. The relative abundance of abundant fungi increased with increasing latitude, whereas the diversity and relative abundance of rare fungi decreased with increasing latitude. Multiple regression models revealed that spatial factor (latitude) predominantly determined the variation of both subcommunities; soil traits had a greater influence on abundant fungi, whereas plant traits were more influential on rare fungi. After accounting for the spatial and climatic factors in the structural equation models, our results further showed that soil C:P, N:P drive abundant fungi, while root N:P drive rare fungi. Taken together, our study revealed the differentiated responses of abundant and rare fungi to soil and root P, highlighting the importance of plant-fungi interactions on biogeographic pattern of soil fungi in coastal wetland ecosystems.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"206 ","pages":"Article 105855"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324005869","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Fungal community typically consist of a few abundant and numerous rare taxa, both of which are crucial for supporting plant growth and maintaining ecosystem functions in coastal wetlands. However, the biogeographic patterns and the ecological drivers of abundant and rare fungi remain elusive, hampering our understanding of their functional roles in these ecosystems. Here, we studied the latitudinal patterns of abundant and rare fungi and their determinants via a large-scale investigation (over 2500 km) in coastal wetlands across eastern China. Abundant and rare fungi exhibited distinct latitudinal patterns. The relative abundance of abundant fungi increased with increasing latitude, whereas the diversity and relative abundance of rare fungi decreased with increasing latitude. Multiple regression models revealed that spatial factor (latitude) predominantly determined the variation of both subcommunities; soil traits had a greater influence on abundant fungi, whereas plant traits were more influential on rare fungi. After accounting for the spatial and climatic factors in the structural equation models, our results further showed that soil C:P, N:P drive abundant fungi, while root N:P drive rare fungi. Taken together, our study revealed the differentiated responses of abundant and rare fungi to soil and root P, highlighting the importance of plant-fungi interactions on biogeographic pattern of soil fungi in coastal wetland ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Application of cellulose-rich organic resource improves soil quality and plant growth by recruiting beneficial microorganisms Ectomycorrhizal fungi explain more variation in rhizosphere nutrient availability than root traits in temperate forests 12-year N addition enhances soil organic carbon decomposition by mediating microbial community composition in temperate plantations Latitudinal patterns and phosphorus-driven regulation of abundant and rare fungal communities in coastal wetlands Impacts of Spartina alterniflora invasion on soil carbon components of particulate and mineral-associated organic matter and soil organic matter mineralization in estuarine wetlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1