Radiological impact from 210Po in food marketed as “superfood”

F. Piñero-García , R. Thomas , E. Forssell-Aronsson , M. Isaksson
{"title":"Radiological impact from 210Po in food marketed as “superfood”","authors":"F. Piñero-García ,&nbsp;R. Thomas ,&nbsp;E. Forssell-Aronsson ,&nbsp;M. Isaksson","doi":"10.1016/j.afres.2025.100694","DOIUrl":null,"url":null,"abstract":"<div><div>The food industry marketing is promoting new nutrient sources marketed as “superfood” exploding in popularity due to their claimed benefits in boosting the health system. “Superfood” products gain popularity among consumers year by year, due to marketing and dietitian's recommendations. These food products can contain traces of radioactive elements such as <sup>210</sup>Po, which has been identified as humans’ carcinogens. Therefore, the ingestion of <sup>210</sup>Po, even at trace levels, could have an important radiological impact on human health. For that reason, the aim of the current study is to determine the radiological impact of <sup>210</sup>Po in food marketed as “superfood”. <sup>210</sup>Po was detected in all samples analysed. The range of activity concentration was 0.09–40 Bq·kg<sup>-1</sup>, with an average activity concentration of 4 ± 8 Bq·kg<sup>-1</sup>. The median levels of <sup>210</sup>Po in groups investigated decreased as follows: Seaweed (3.0 Bq·kg<sup>-1</sup>) &gt; Fungi (2.4 Bq·kg<sup>-1</sup>) &gt; Algae (1.5 Bq·kg<sup>-1</sup>) &gt; Botanical (0.7 Bq·kg<sup>-1</sup>) &gt; Insect (0.09 Bq·kg<sup>-1</sup>). As a result, the radiation dose exposure for consumers could increase around 1 – 90 μSv/y, depending on superfood product. On average, the inclusion of those products in the Swedish diet could increase between 2 and 12 % the total dose received by <sup>210</sup>Po and food consumption.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100694"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502225000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The food industry marketing is promoting new nutrient sources marketed as “superfood” exploding in popularity due to their claimed benefits in boosting the health system. “Superfood” products gain popularity among consumers year by year, due to marketing and dietitian's recommendations. These food products can contain traces of radioactive elements such as 210Po, which has been identified as humans’ carcinogens. Therefore, the ingestion of 210Po, even at trace levels, could have an important radiological impact on human health. For that reason, the aim of the current study is to determine the radiological impact of 210Po in food marketed as “superfood”. 210Po was detected in all samples analysed. The range of activity concentration was 0.09–40 Bq·kg-1, with an average activity concentration of 4 ± 8 Bq·kg-1. The median levels of 210Po in groups investigated decreased as follows: Seaweed (3.0 Bq·kg-1) > Fungi (2.4 Bq·kg-1) > Algae (1.5 Bq·kg-1) > Botanical (0.7 Bq·kg-1) > Insect (0.09 Bq·kg-1). As a result, the radiation dose exposure for consumers could increase around 1 – 90 μSv/y, depending on superfood product. On average, the inclusion of those products in the Swedish diet could increase between 2 and 12 % the total dose received by 210Po and food consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Comparative effect of boiling, microwave and ultrasonication treatment on microstructure, nutritional and microbial quality of Tofu Orange sweet potato flour production: Comparative effects on ultrasound, drying, storage, and techno-economic assessment Liposome-like encapsulation of fish oil-based self-nano emulsifying formulation for improved bioavailability Enhancing grape juice with Lacticaseibacillus rhamnosus CWKu-12: Assessing probiotic viability, physicochemical changes, sensory characteristics, and quality kinetics throughout storage Combined effects of alginate based active edible coatings and irradiation treatment on the quality characteristics of Beef Meat at 2°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1