Extracting chemical food safety hazards from the scientific literature automatically using large language models

Neris Özen, Wenjuan Mu, Esther D. van Asselt, Leonieke M. van den Bulk
{"title":"Extracting chemical food safety hazards from the scientific literature automatically using large language models","authors":"Neris Özen,&nbsp;Wenjuan Mu,&nbsp;Esther D. van Asselt,&nbsp;Leonieke M. van den Bulk","doi":"10.1016/j.afres.2024.100679","DOIUrl":null,"url":null,"abstract":"<div><div>The number of scientific articles published in the domain of food safety has consistently been increasing over the last few decades. It has therefore become unfeasible for food safety experts to read all relevant literature related to food safety and the occurrence of hazards in the food chain. However, it is important that food safety experts are aware of the newest findings and can access this information in an easy and concise way. In this study, an approach is presented to automate the extraction of chemical hazards from the scientific literature through large language models. The large language model was used out-of-the-box and applied on scientific abstracts; no extra training of the models or a large computing cluster was required. Three different styles of prompting the model were tested to assess which was the most optimal for the task at hand. The prompts were optimized with two validation foods (leafy greens and shellfish) and the final performance of the best prompt was evaluated using three test foods (dairy, maize and salmon). The specific wording of the prompt was found to have a considerable effect on the results. A prompt breaking the task down into smaller steps performed best overall. This prompt reached an average accuracy of 93 % and contained many chemical contaminants already included in food monitoring programs, validating the successful retrieval of relevant hazards for the food safety domain. The results showcase how valuable large language models can be for the task of automatic information extraction from the scientific literature.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100679"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502224002890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of scientific articles published in the domain of food safety has consistently been increasing over the last few decades. It has therefore become unfeasible for food safety experts to read all relevant literature related to food safety and the occurrence of hazards in the food chain. However, it is important that food safety experts are aware of the newest findings and can access this information in an easy and concise way. In this study, an approach is presented to automate the extraction of chemical hazards from the scientific literature through large language models. The large language model was used out-of-the-box and applied on scientific abstracts; no extra training of the models or a large computing cluster was required. Three different styles of prompting the model were tested to assess which was the most optimal for the task at hand. The prompts were optimized with two validation foods (leafy greens and shellfish) and the final performance of the best prompt was evaluated using three test foods (dairy, maize and salmon). The specific wording of the prompt was found to have a considerable effect on the results. A prompt breaking the task down into smaller steps performed best overall. This prompt reached an average accuracy of 93 % and contained many chemical contaminants already included in food monitoring programs, validating the successful retrieval of relevant hazards for the food safety domain. The results showcase how valuable large language models can be for the task of automatic information extraction from the scientific literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Comparative effect of boiling, microwave and ultrasonication treatment on microstructure, nutritional and microbial quality of Tofu Orange sweet potato flour production: Comparative effects on ultrasound, drying, storage, and techno-economic assessment Liposome-like encapsulation of fish oil-based self-nano emulsifying formulation for improved bioavailability Enhancing grape juice with Lacticaseibacillus rhamnosus CWKu-12: Assessing probiotic viability, physicochemical changes, sensory characteristics, and quality kinetics throughout storage Combined effects of alginate based active edible coatings and irradiation treatment on the quality characteristics of Beef Meat at 2°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1