Inulin-coated Virgin Coconut Oil (VCO) powder produced by spray drying

Lanny Sapei , Pra Cipta Buana Wahyu Mustika , Putu Doddy Sutrisna , Rudy Agustriyanto , Puguh Setyopratomo , Grace Vita Santoso , Justinus Putra Utama , Rochmad Indrawanto
{"title":"Inulin-coated Virgin Coconut Oil (VCO) powder produced by spray drying","authors":"Lanny Sapei ,&nbsp;Pra Cipta Buana Wahyu Mustika ,&nbsp;Putu Doddy Sutrisna ,&nbsp;Rudy Agustriyanto ,&nbsp;Puguh Setyopratomo ,&nbsp;Grace Vita Santoso ,&nbsp;Justinus Putra Utama ,&nbsp;Rochmad Indrawanto","doi":"10.1016/j.afres.2025.100721","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to produce inulin-coated virgin coconut oil (VCO) powder using spray drying technology. VCO, known for its high content of medium-chain fatty acids and antioxidants, has faced challenges in food and pharmaceutical applications due to its susceptibility to oxidation thus reducing its shelf-life. Inulin as the encapsulating agent, presented an effective solution, offering not only encapsulation efficiency but also added health benefits as prebiotics. The process parameters, such as inlet air temperature (110–180 °C), feed flow rate (5–8 mL/min), aspiration rate (80–100 %), and air pressure at nozzle (1–1.8 bar) as well as total solid percentage in the emulsion feed (45–55 %) were varied. The best conditions were identified as inlet air temperature 150 °C, feed flow rate 5 ml/min, aspiration rate 100 %, air pressure at nozzle 1 bar, and 50 % total solid content to produce powder with high yield (∼88 %), low moisture content (2.9 %), and other desirable characteristics, such as density, particle size, morphology, and flowability. This study provides a framework for producing scalable inulin-coated VCO powder with enhanced shelf-life, functionality, and versatile applications in health-oriented food and pharmaceuticals.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100721"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502225000319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to produce inulin-coated virgin coconut oil (VCO) powder using spray drying technology. VCO, known for its high content of medium-chain fatty acids and antioxidants, has faced challenges in food and pharmaceutical applications due to its susceptibility to oxidation thus reducing its shelf-life. Inulin as the encapsulating agent, presented an effective solution, offering not only encapsulation efficiency but also added health benefits as prebiotics. The process parameters, such as inlet air temperature (110–180 °C), feed flow rate (5–8 mL/min), aspiration rate (80–100 %), and air pressure at nozzle (1–1.8 bar) as well as total solid percentage in the emulsion feed (45–55 %) were varied. The best conditions were identified as inlet air temperature 150 °C, feed flow rate 5 ml/min, aspiration rate 100 %, air pressure at nozzle 1 bar, and 50 % total solid content to produce powder with high yield (∼88 %), low moisture content (2.9 %), and other desirable characteristics, such as density, particle size, morphology, and flowability. This study provides a framework for producing scalable inulin-coated VCO powder with enhanced shelf-life, functionality, and versatile applications in health-oriented food and pharmaceuticals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Comparative effect of boiling, microwave and ultrasonication treatment on microstructure, nutritional and microbial quality of Tofu Orange sweet potato flour production: Comparative effects on ultrasound, drying, storage, and techno-economic assessment Liposome-like encapsulation of fish oil-based self-nano emulsifying formulation for improved bioavailability Enhancing grape juice with Lacticaseibacillus rhamnosus CWKu-12: Assessing probiotic viability, physicochemical changes, sensory characteristics, and quality kinetics throughout storage Combined effects of alginate based active edible coatings and irradiation treatment on the quality characteristics of Beef Meat at 2°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1