Microstructure and corrosion resistance of pyrolyzed Mg – ZnO thin film coatings on mild steel

Victor Adewale Owoeye , Mojisola Olubunmi Nkiko , Frank O. Efe , Abiodun Eyitayo Adeoye , Enoch Debayo Ogunmola , Ayodele Nicholas Orelusi
{"title":"Microstructure and corrosion resistance of pyrolyzed Mg – ZnO thin film coatings on mild steel","authors":"Victor Adewale Owoeye ,&nbsp;Mojisola Olubunmi Nkiko ,&nbsp;Frank O. Efe ,&nbsp;Abiodun Eyitayo Adeoye ,&nbsp;Enoch Debayo Ogunmola ,&nbsp;Ayodele Nicholas Orelusi","doi":"10.1016/j.cinorg.2024.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Corrosion in steel structures reduces their reliability, posing serious safety hazards and leading to costly maintenance and replacements. By weakening the steel's load-bearing capacity, corrosion heightens the risk of structural failure, especially in essential infrastructure like bridges and buildings. It also visually degrades structures, lowering property values and detracting from the appearance of architectural elements. This study investigates the impact of zinc oxide and Mg-doped zinc oxide thin film coatings on the corrosion rate and morphology of mild steel. Using chemical spray pyrolysis (CSPT), thin films of ZnO and MgO were synthesized from zinc acetate and magnesium acetate precursors, respectively, and deposited on ultrasonically cleaned, preheated mild steel substrates. Scanning electron microscopy (SEM) analysis confirmed the presence of uniform, defect-free films, while energy dispersive X-ray spectroscopy (EDX) verified Zn, Mg, and O in the coatings. The coated films enhanced the mild steel's corrosion resistance, with undoped ZnO providing the most effective surface modification.</div></div>","PeriodicalId":100233,"journal":{"name":"Chemistry of Inorganic Materials","volume":"5 ","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Inorganic Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949746924000533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion in steel structures reduces their reliability, posing serious safety hazards and leading to costly maintenance and replacements. By weakening the steel's load-bearing capacity, corrosion heightens the risk of structural failure, especially in essential infrastructure like bridges and buildings. It also visually degrades structures, lowering property values and detracting from the appearance of architectural elements. This study investigates the impact of zinc oxide and Mg-doped zinc oxide thin film coatings on the corrosion rate and morphology of mild steel. Using chemical spray pyrolysis (CSPT), thin films of ZnO and MgO were synthesized from zinc acetate and magnesium acetate precursors, respectively, and deposited on ultrasonically cleaned, preheated mild steel substrates. Scanning electron microscopy (SEM) analysis confirmed the presence of uniform, defect-free films, while energy dispersive X-ray spectroscopy (EDX) verified Zn, Mg, and O in the coatings. The coated films enhanced the mild steel's corrosion resistance, with undoped ZnO providing the most effective surface modification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multifunctional silver-doped strontium hexaferrite nanoparticles: Magnetic, optical, photocatalytic, and antimicrobial properties Enhanced optical and electrical properties of NiO-GO composite thin films on flexible PET substrates for optoelectronic applications Characteristics of Mg-based cathode materials with different doping element concentrations Comparative study on photocatalytic efficiency of Mg doped CuFeO2 versus TiO2 doped CuFeO2 delafossite based on their application for the removal of tartrazine yellow dye Ag(I) decorated isomeric triazine complexes as efficient hydrogen storage materials - A theoretical investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1