{"title":"Optimal storage conditions for spray-dried chayote juice (Sechium edule (Jacq.) Sw. cv. Perla Negra) microencapsulated with gum arabic","authors":"Karina Huerta-Vera , Enrique Flores-Andrade , María de Lourdes Catalina Arévalo-Galarza , Jorge Cadena-Iñiguez , Marisol Castillo-Morales , Guadalupe Vivar-Vera , Jaime Jiménez-Guzmán , Ramón Marcos Soto-Hernández","doi":"10.1016/j.fbp.2025.01.014","DOIUrl":null,"url":null,"abstract":"<div><div><em>Sechium edule</em> Perla Negra cultivar (CPN) chayote juice contains bioactive compounds beneficial for health, but it requires protection to maintain its biological activity during storage. In this study, CPN chayote juice was microencapsulated by spray drying using gum arabic (GA) as the wall material. The resulting microcapsules were evaluated through moisture adsorption isotherms at 25 °C, 35 °C, and 45 °C. A thermodynamic approach, based on the GAB, BET, GDW, and Condon models, was used to describe the adsorption characteristics within a water activity (<span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>) range of 0.10–0.85. Additionally, microstructure, color, total flavonoid content (TFC), and cucurbitacins in the microcapsules were analyzed while stored at different <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span> levels at 35 °C. Two stability phases were identified: a high-stability phase (0.108 ⎼ 0.515 <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>) and a lower stability phase (0.515 ⎼ 0.821 <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>). Optimal storage conditions were determined based on monolayer moisture content (<em>Mₒ</em>), minimum integral entropy, and minimum change in spreading pressure (MCSP), with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span> values from 0.116 to 0.450. These conditions correlated with minimal changes in microstructure, color, and bioactive compounds (TFC and cucurbitacins). The degradation rate constants for TFC followed first-order kinetics, with half-life times of 125 and 293 days for the first and second phases, respectively. This thermodynamic approach is a valuable tool for determining the optimal storage conditions and ensuring the preservation of the bioactive properties of CPN chayote juice, renowned for its antioxidant, anti-inflammatory, and anticancer activities, making it a promising ingredient for functional foods, dietary supplements, nutraceuticals, and phytopharmaceutical products.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"150 ","pages":"Pages 296-309"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308525000148","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sechium edule Perla Negra cultivar (CPN) chayote juice contains bioactive compounds beneficial for health, but it requires protection to maintain its biological activity during storage. In this study, CPN chayote juice was microencapsulated by spray drying using gum arabic (GA) as the wall material. The resulting microcapsules were evaluated through moisture adsorption isotherms at 25 °C, 35 °C, and 45 °C. A thermodynamic approach, based on the GAB, BET, GDW, and Condon models, was used to describe the adsorption characteristics within a water activity () range of 0.10–0.85. Additionally, microstructure, color, total flavonoid content (TFC), and cucurbitacins in the microcapsules were analyzed while stored at different levels at 35 °C. Two stability phases were identified: a high-stability phase (0.108 ⎼ 0.515 ) and a lower stability phase (0.515 ⎼ 0.821 ). Optimal storage conditions were determined based on monolayer moisture content (Mₒ), minimum integral entropy, and minimum change in spreading pressure (MCSP), with values from 0.116 to 0.450. These conditions correlated with minimal changes in microstructure, color, and bioactive compounds (TFC and cucurbitacins). The degradation rate constants for TFC followed first-order kinetics, with half-life times of 125 and 293 days for the first and second phases, respectively. This thermodynamic approach is a valuable tool for determining the optimal storage conditions and ensuring the preservation of the bioactive properties of CPN chayote juice, renowned for its antioxidant, anti-inflammatory, and anticancer activities, making it a promising ingredient for functional foods, dietary supplements, nutraceuticals, and phytopharmaceutical products.
期刊介绍:
Official Journal of the European Federation of Chemical Engineering:
Part C
FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering.
Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing.
The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those:
• Primarily concerned with food formulation
• That use experimental design techniques to obtain response surfaces but gain little insight from them
• That are empirical and ignore established mechanistic models, e.g., empirical drying curves
• That are primarily concerned about sensory evaluation and colour
• Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material,
• Containing only chemical analyses of biological materials.