Li Deng , Quanren Yan , Jun Yang , Shanlin Gao , Quanlin Hou , Haiquan Tang , Bo Song , Min Deng
{"title":"Environmental drivers of biotic turnover: Insight from tectono-sedimentary environment transition during the terminal Ediacaran to Early Cambrian","authors":"Li Deng , Quanren Yan , Jun Yang , Shanlin Gao , Quanlin Hou , Haiquan Tang , Bo Song , Min Deng","doi":"10.1016/j.precamres.2024.107666","DOIUrl":null,"url":null,"abstract":"<div><div>Biotic turnover and innovation during the terminal Ediacaran to Early Cambrian have been widely linked to tectonic, sedimentary, climatic, and oceanic environmental changes due to their temporal coincidence. However, the precise interconnections between these environmental factors and biological co-evolution remain uncertain. The Yangtze Block preserves essential records to investigate this issue. In this study, we use lithostratigraphic logs and correlations of the terminal Ediacaran to Early Cambrian successions across the upper Yangtze Block to suggest that, the significant lithological change from dolomite to siliciclastic-dominated sedimentation indicates the tectono-sedimentary environment transition from a shallow-water carbonate platform to a deep-water siliciclastic basin. Extensional tectonic activities, enhanced continental weathering, and rising sea levels led to rapid subsidence and extensive siliciclastic sediment accumulation during the Early Cambrian, facilitating this transformation. This sedimentary environment transition also correlates with marine transgression on a global scale. Further, qualitative comparisons of detrital zircon age spectra from this period place the Yangtze Block near northern India, confirming its paleogeographic and material connections with Gondwana. By integrating these findings and geological data on tectonism, sedimentation, marine environment, and biological evolution, this paper constructs a synthetic framework to propose that enhanced continental weathering and marine transgression during the assembly of Gondwana initially triggered changes in lithofacies and seawater conditions, potentially driving early bio-evolution. Our research highlights the interactions among multiple environmental factors during this critical geological period, which contributes to understanding the trigger of the Cambrian explosion.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"417 ","pages":"Article 107666"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824003796","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biotic turnover and innovation during the terminal Ediacaran to Early Cambrian have been widely linked to tectonic, sedimentary, climatic, and oceanic environmental changes due to their temporal coincidence. However, the precise interconnections between these environmental factors and biological co-evolution remain uncertain. The Yangtze Block preserves essential records to investigate this issue. In this study, we use lithostratigraphic logs and correlations of the terminal Ediacaran to Early Cambrian successions across the upper Yangtze Block to suggest that, the significant lithological change from dolomite to siliciclastic-dominated sedimentation indicates the tectono-sedimentary environment transition from a shallow-water carbonate platform to a deep-water siliciclastic basin. Extensional tectonic activities, enhanced continental weathering, and rising sea levels led to rapid subsidence and extensive siliciclastic sediment accumulation during the Early Cambrian, facilitating this transformation. This sedimentary environment transition also correlates with marine transgression on a global scale. Further, qualitative comparisons of detrital zircon age spectra from this period place the Yangtze Block near northern India, confirming its paleogeographic and material connections with Gondwana. By integrating these findings and geological data on tectonism, sedimentation, marine environment, and biological evolution, this paper constructs a synthetic framework to propose that enhanced continental weathering and marine transgression during the assembly of Gondwana initially triggered changes in lithofacies and seawater conditions, potentially driving early bio-evolution. Our research highlights the interactions among multiple environmental factors during this critical geological period, which contributes to understanding the trigger of the Cambrian explosion.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.