Synergistic effect of magnetic magnetite and greigite nanoparticles dispersed pinewood biochar for aqueous lead(II) and cadmium(II) adsorption

Prashan M. Rodrigo , Raghava R. Kommalapati
{"title":"Synergistic effect of magnetic magnetite and greigite nanoparticles dispersed pinewood biochar for aqueous lead(II) and cadmium(II) adsorption","authors":"Prashan M. Rodrigo ,&nbsp;Raghava R. Kommalapati","doi":"10.1016/j.clwat.2025.100068","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metals such as lead and cadmium cause adverse effects on all living organisms. Their remediation is complex in the aqueous phase. Biochar is a low-cost, environmentally friendly adsorbent material that exhibited a limited ability to adsorb Pb<sup>2+</sup> and Cd<sup>2+</sup>. Iron-based magnetite and greigite nanoparticles have proven high adsorption capacity due to high amounts of oxygen and sulfur-contained functional groups per unit volume. In this study, a mixture of greigite and magnetite nanoparticles was simultaneously synthesized on pinewood biochar (BC), aiding co-precipitation from a Fe<sup>2+</sup>/Fe<sup>3+</sup> and S<sup>2-</sup> salts mixture (Fe<sub>3</sub>O<sub>4</sub>-Fe<sub>3</sub>S<sub>4</sub>/BC), that offers a cost-effective, sustainable, and efficient material for Pb<sup>2+</sup> and Cd<sup>2+</sup> removal. BC, Fe<sub>3</sub>O<sub>4</sub>-Fe<sub>3</sub>S<sub>4</sub>/BC, and Pb<sup>2+</sup> and Cd<sup>2+</sup> adsorbed Fe<sub>3</sub>O<sub>4</sub>-Fe<sub>3</sub>S<sub>4</sub>/BC materials were characterized to differentiate surface morphologies, elemental compositions, and surface chemical states. The Fe<sub>3</sub>O<sub>4</sub>-Fe<sub>3</sub>S<sub>4</sub>/BC composite exhibited an average nanoparticle diameter of ∼20 nm. Fe<sub>3</sub>O<sub>4</sub>-Fe<sub>3</sub>S<sub>4</sub>/BC showed Langmuir adsorption capacities of 138.9 and 49.5 mg g<sup>-1</sup> for Pb<sup>2+</sup> and Cd<sup>2+</sup> at pH 5 (25 °C). Pb<sup>2+</sup> and Cd<sup>2+</sup> followed pseudo-second-order kinetics, and the equilibriums were achieved after ∼2 h and ∼30 min, respectively, for 125 and 1250 μmol L<sup>-1</sup> concentrations, respectively, where the fast adsorption rates make Fe<sub>3</sub>O<sub>4</sub>-Fe<sub>3</sub>S<sub>4</sub>/BC hybrid system a practical option for real-time treatment. Further, adsorption performances were influenced by ionic strength, dose optimization, and the presence of competing ions, suggesting the potential for fine-tuning adsorbent conditions in practical applications. This study enhanced the understanding of adsorption characteristics for a treatment facility that can effectively remediate lead and cadmium-contaminated wastewater. While there have been studies on using biochar and nanoparticles separately for Pb<sup>2+</sup> and Cd<sup>2+</sup> adsorption, this research bridges the gap by demonstrating the synergistic effect for Pb<sup>2+</sup> and Cd<sup>2+</sup> adsorption from hybrid magnetite-greigite nanoparticles.</div></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"3 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263225000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metals such as lead and cadmium cause adverse effects on all living organisms. Their remediation is complex in the aqueous phase. Biochar is a low-cost, environmentally friendly adsorbent material that exhibited a limited ability to adsorb Pb2+ and Cd2+. Iron-based magnetite and greigite nanoparticles have proven high adsorption capacity due to high amounts of oxygen and sulfur-contained functional groups per unit volume. In this study, a mixture of greigite and magnetite nanoparticles was simultaneously synthesized on pinewood biochar (BC), aiding co-precipitation from a Fe2+/Fe3+ and S2- salts mixture (Fe3O4-Fe3S4/BC), that offers a cost-effective, sustainable, and efficient material for Pb2+ and Cd2+ removal. BC, Fe3O4-Fe3S4/BC, and Pb2+ and Cd2+ adsorbed Fe3O4-Fe3S4/BC materials were characterized to differentiate surface morphologies, elemental compositions, and surface chemical states. The Fe3O4-Fe3S4/BC composite exhibited an average nanoparticle diameter of ∼20 nm. Fe3O4-Fe3S4/BC showed Langmuir adsorption capacities of 138.9 and 49.5 mg g-1 for Pb2+ and Cd2+ at pH 5 (25 °C). Pb2+ and Cd2+ followed pseudo-second-order kinetics, and the equilibriums were achieved after ∼2 h and ∼30 min, respectively, for 125 and 1250 μmol L-1 concentrations, respectively, where the fast adsorption rates make Fe3O4-Fe3S4/BC hybrid system a practical option for real-time treatment. Further, adsorption performances were influenced by ionic strength, dose optimization, and the presence of competing ions, suggesting the potential for fine-tuning adsorbent conditions in practical applications. This study enhanced the understanding of adsorption characteristics for a treatment facility that can effectively remediate lead and cadmium-contaminated wastewater. While there have been studies on using biochar and nanoparticles separately for Pb2+ and Cd2+ adsorption, this research bridges the gap by demonstrating the synergistic effect for Pb2+ and Cd2+ adsorption from hybrid magnetite-greigite nanoparticles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of coffee grounds-based activated carbon catalyst for ozone water treatment: A Box-Behnken design approach Treatment methods for sugar rich wastewater: A review Synergistic effect of magnetic magnetite and greigite nanoparticles dispersed pinewood biochar for aqueous lead(II) and cadmium(II) adsorption Review and selection methodology for water treatment systems in mobile encampments for military applications Influence of plant species on triclosan removal and associated microbial communities in the vertical-flow constructed wetland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1