Optimization of coffee grounds-based activated carbon catalyst for ozone water treatment: A Box-Behnken design approach

C.A.L. Graça , O.S.G.P. Soares
{"title":"Optimization of coffee grounds-based activated carbon catalyst for ozone water treatment: A Box-Behnken design approach","authors":"C.A.L. Graça ,&nbsp;O.S.G.P. Soares","doi":"10.1016/j.clwat.2025.100069","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses two pressing environmental issues—resource conservation and waste valorization—while advancing water cleaning solutions. Activated carbon derived from coffee grounds (ACCG) was synthesized to optimize oxalic acid (OXL) removal via catalytic ozonation, as OXL is not effectively degraded by ozone alone, which can lead to its persistence in the environment. A Box-Behnken design approach was used to optimize synthesis conditions, namely dwell temperature (°C), dwell time (h) and %CO<sub>2</sub> in gas flow rate, through response surface methodology (RSM). The resulting materials were characterized by thermogravimetric analysis (TGA), specific surface area measurement by nitrogen adsorption-dessorption isotherms at −196 °C, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The statistical model that describes the response adjusts perfectly to the experimental data with R<sup>2</sup> = 0.994 and the analysis of variance (ANOVA) confirms that it is statistically predictive and significant. Optimal synthesis conditions for the highest OXL degradation rate constant (<em>k</em>', min⁻¹) were identified as: 400 °C of dwell temperature, 2 h of dwell time and 70 % of CO<sub>2</sub> (v/v). The ACCG prepared under these conditions enabled a <em>k’</em> 14-fold higher than that achieved with single ozonation. Selective quenching experiments suggest that singlet oxygen (<sup>1</sup>O<sub>2</sub>) is the main reactive oxygen species formed during catalytic ozonation. The best performing ACCG was submitted to three reutilization cycles, and although a more prominent activity loss was observed after the 1st cycle, the catalyst maintained good catalytic activity across all cycles, consistently achieving higher OXL removal than ozonation alone. Overall, this study provided a sustainable approach to managing waste by valorizing coffee grounds into effective catalysts while enhancing water treatment efficiency.</div></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"3 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263225000079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses two pressing environmental issues—resource conservation and waste valorization—while advancing water cleaning solutions. Activated carbon derived from coffee grounds (ACCG) was synthesized to optimize oxalic acid (OXL) removal via catalytic ozonation, as OXL is not effectively degraded by ozone alone, which can lead to its persistence in the environment. A Box-Behnken design approach was used to optimize synthesis conditions, namely dwell temperature (°C), dwell time (h) and %CO2 in gas flow rate, through response surface methodology (RSM). The resulting materials were characterized by thermogravimetric analysis (TGA), specific surface area measurement by nitrogen adsorption-dessorption isotherms at −196 °C, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The statistical model that describes the response adjusts perfectly to the experimental data with R2 = 0.994 and the analysis of variance (ANOVA) confirms that it is statistically predictive and significant. Optimal synthesis conditions for the highest OXL degradation rate constant (k', min⁻¹) were identified as: 400 °C of dwell temperature, 2 h of dwell time and 70 % of CO2 (v/v). The ACCG prepared under these conditions enabled a k’ 14-fold higher than that achieved with single ozonation. Selective quenching experiments suggest that singlet oxygen (1O2) is the main reactive oxygen species formed during catalytic ozonation. The best performing ACCG was submitted to three reutilization cycles, and although a more prominent activity loss was observed after the 1st cycle, the catalyst maintained good catalytic activity across all cycles, consistently achieving higher OXL removal than ozonation alone. Overall, this study provided a sustainable approach to managing waste by valorizing coffee grounds into effective catalysts while enhancing water treatment efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of coffee grounds-based activated carbon catalyst for ozone water treatment: A Box-Behnken design approach Treatment methods for sugar rich wastewater: A review Synergistic effect of magnetic magnetite and greigite nanoparticles dispersed pinewood biochar for aqueous lead(II) and cadmium(II) adsorption Review and selection methodology for water treatment systems in mobile encampments for military applications Influence of plant species on triclosan removal and associated microbial communities in the vertical-flow constructed wetland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1