{"title":"The ion current response of a laminar lifted non-premixed flame in a DC electric field","authors":"Yu-Ren Chien , Chiang Fu , Ying-Hao Liao","doi":"10.1016/j.ijheatfluidflow.2024.109740","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of a DC electric field on the lift-off height and ion current of a laminar lifted non-premixed jet flame. The experimental setup includes two horizontal electrodes that creates a vertical electric field aligned with the jet flow, with a positive field directing from the burner toward the downstream electrode. Results show that a DC electric field, regardless of polarity, reduces the flame lift-off height, with sufficiently strong fields causing flame reattachment. Flames with higher fuel flow rates exhibit larger lift-off heights and require stronger electric fields for reattachment, whereas lower flow rates are more sensitive to the applied field. Negative electric fields are more effective at reducing lift-off height and generating higher ion currents than positive fields. Ion current measurements reveal a strong correlation between field strength and flame reattachment, with ion current increasing significantly as the flame transitions from lift-off to reattachment. The study proposes a scaling relation between ion current, flame lift-off height, and electric field strength, demonstrating that ionic wind driven by the electric force plays a crucial role in flame stabilization. These findings suggest that DC electric fields offer a promising approach for controlling flame behavior, with potential applications in enhancing combustion efficiency and stability.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109740"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X2400465X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of a DC electric field on the lift-off height and ion current of a laminar lifted non-premixed jet flame. The experimental setup includes two horizontal electrodes that creates a vertical electric field aligned with the jet flow, with a positive field directing from the burner toward the downstream electrode. Results show that a DC electric field, regardless of polarity, reduces the flame lift-off height, with sufficiently strong fields causing flame reattachment. Flames with higher fuel flow rates exhibit larger lift-off heights and require stronger electric fields for reattachment, whereas lower flow rates are more sensitive to the applied field. Negative electric fields are more effective at reducing lift-off height and generating higher ion currents than positive fields. Ion current measurements reveal a strong correlation between field strength and flame reattachment, with ion current increasing significantly as the flame transitions from lift-off to reattachment. The study proposes a scaling relation between ion current, flame lift-off height, and electric field strength, demonstrating that ionic wind driven by the electric force plays a crucial role in flame stabilization. These findings suggest that DC electric fields offer a promising approach for controlling flame behavior, with potential applications in enhancing combustion efficiency and stability.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.