Filipe L. Brandao , Jonathan B. Boreyko , Flavio Dal Forno Chuahy
{"title":"Numerical analysis of coalescence-induced bubble departure for enhanced boiling heat transfer","authors":"Filipe L. Brandao , Jonathan B. Boreyko , Flavio Dal Forno Chuahy","doi":"10.1016/j.ijheatfluidflow.2024.109674","DOIUrl":null,"url":null,"abstract":"<div><div>Boiling heat transfer plays a crucial role in a wide range of applications, such as power generation, refrigeration, electronics cooling, and pharmaceutics. Among the various factors that influence boiling heat transfer, the dynamics of vapor bubble nucleation, growth, and departure from the heated surface stand out as particularly important. An emerging phenomenon that can promote the departure of bubbles smaller than the Fritz diameter is coalescence-induced departure. If the dynamics of this process are fully understood, then surfaces can be engineered to promote faster bubble departure and substantially increase the performance of boiling heat transfer. This work expands on published results by presenting a detailed numerical analysis of bubble coalescence and departure for a range of initial bubble diameters and size ratios between coalescing bubbles. Analysis of the results is focused on explaining how the release of surface energy and bubble surface dynamics lead to bubble departure, as well as fundamentally distinguishing capillary–inertial jumping and buoyant–inertial departure mechanisms across different bubble sizes and size ratios. The results show that both the initial sizes of the coalescing bubbles and the ratio between their sizes can determine whether the merged bubble will leave the surface through capillary–inertial jumping or buoyant departure. Below a certain bubble size, the release of surface energy by the merger is not sufficient to propel the merged bubble from the surface.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109674"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003990","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Boiling heat transfer plays a crucial role in a wide range of applications, such as power generation, refrigeration, electronics cooling, and pharmaceutics. Among the various factors that influence boiling heat transfer, the dynamics of vapor bubble nucleation, growth, and departure from the heated surface stand out as particularly important. An emerging phenomenon that can promote the departure of bubbles smaller than the Fritz diameter is coalescence-induced departure. If the dynamics of this process are fully understood, then surfaces can be engineered to promote faster bubble departure and substantially increase the performance of boiling heat transfer. This work expands on published results by presenting a detailed numerical analysis of bubble coalescence and departure for a range of initial bubble diameters and size ratios between coalescing bubbles. Analysis of the results is focused on explaining how the release of surface energy and bubble surface dynamics lead to bubble departure, as well as fundamentally distinguishing capillary–inertial jumping and buoyant–inertial departure mechanisms across different bubble sizes and size ratios. The results show that both the initial sizes of the coalescing bubbles and the ratio between their sizes can determine whether the merged bubble will leave the surface through capillary–inertial jumping or buoyant departure. Below a certain bubble size, the release of surface energy by the merger is not sufficient to propel the merged bubble from the surface.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.