Tooth surface contact temperature of spur-face gear drive in point contact considering heat flow distribution

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2025-01-28 DOI:10.1016/j.ijheatfluidflow.2025.109759
Lingyun Zhu, Qingfu Guo, Bo Xu, Xiangfeng Gou
{"title":"Tooth surface contact temperature of spur-face gear drive in point contact considering heat flow distribution","authors":"Lingyun Zhu,&nbsp;Qingfu Guo,&nbsp;Bo Xu,&nbsp;Xiangfeng Gou","doi":"10.1016/j.ijheatfluidflow.2025.109759","DOIUrl":null,"url":null,"abstract":"<div><div>Point contact and line contact are two different contacts in gear transmission. The spur-face gear drive (SFGD) is a novel gear transmission characterized by its point contact. Its meshing point trajectories are determined by calculating the tooth surface equations and meshing equations, which are established based on the shaping of the face gear and the laws of point contact during meshing. The meshing characteristics in point contact are analyzed and the load distribution ratio of SFGD is calculated according to Hertzian elastic contact theory and its multi-state meshing characteristics. Time-varying oil film parameters and friction coefficients are obtained based on the Greenwood-Williamson model as rough tooth surfaces are analyzed. A calculation method of tooth surface contact temperature (TSCT) for SFGD with point contact is developed after its tooth surface flash temperature (TSFT) is improved based on Blok flash temperature theory as oil injection lubrication is considered by integrating tribology, heat transfer, and the principles of heat flow distribution in adhered lubricant. It indicates that TSFT and TSCT are resulted in tooth surface roughness, speed, load, and contact position. A finite element model is constructed when the three-dimensional unsteady heat conduction, heat flow and boundary condition are considered to verify the theoretical calculation methods of TSFT, TSCT and bulk temperature (BT). The trend of the simulation is very close to the one of theoretical calculation. TSCT at the mesh-in and mesh-out points are higher than that at other meshing positions. TSFT at the pitch point of pinion equals to 0. TSCT at the alternating meshing position between single-pair and double-pair teeth jump, which is caused by the load variation result in the change in the number of meshing teeth pairs. TSCT can be reduced by optimizing surface roughness and input parameters. It is a theoretical foundation for the thermal behavior analysis under lubricated conditions and a significant reference for design and optimization of point contact gear drives.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109759"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Point contact and line contact are two different contacts in gear transmission. The spur-face gear drive (SFGD) is a novel gear transmission characterized by its point contact. Its meshing point trajectories are determined by calculating the tooth surface equations and meshing equations, which are established based on the shaping of the face gear and the laws of point contact during meshing. The meshing characteristics in point contact are analyzed and the load distribution ratio of SFGD is calculated according to Hertzian elastic contact theory and its multi-state meshing characteristics. Time-varying oil film parameters and friction coefficients are obtained based on the Greenwood-Williamson model as rough tooth surfaces are analyzed. A calculation method of tooth surface contact temperature (TSCT) for SFGD with point contact is developed after its tooth surface flash temperature (TSFT) is improved based on Blok flash temperature theory as oil injection lubrication is considered by integrating tribology, heat transfer, and the principles of heat flow distribution in adhered lubricant. It indicates that TSFT and TSCT are resulted in tooth surface roughness, speed, load, and contact position. A finite element model is constructed when the three-dimensional unsteady heat conduction, heat flow and boundary condition are considered to verify the theoretical calculation methods of TSFT, TSCT and bulk temperature (BT). The trend of the simulation is very close to the one of theoretical calculation. TSCT at the mesh-in and mesh-out points are higher than that at other meshing positions. TSFT at the pitch point of pinion equals to 0. TSCT at the alternating meshing position between single-pair and double-pair teeth jump, which is caused by the load variation result in the change in the number of meshing teeth pairs. TSCT can be reduced by optimizing surface roughness and input parameters. It is a theoretical foundation for the thermal behavior analysis under lubricated conditions and a significant reference for design and optimization of point contact gear drives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Theoretical and numerical studies of heat and humidity transfer in underground ventilation corridor Quasi-one-dimensional mathematical model of the two-dimensional supersonic cavity mean flow Numerical simulation of fractional order double diffusive convective nanofluid flow in a wavy porous enclosure Investigations on the energy conversion characteristics and the prediction of power and efficiency of a multiphase pump under gas-liquid conditions Thermo-elastic model and surface evaporation model to Reveal the damage mechanism of melanocytes induced by laser ablation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1