Modeling surface tension of ten binary cryogenic mixtures with a thermodynamic method and artificial neural network

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED Cryogenics Pub Date : 2025-01-15 DOI:10.1016/j.cryogenics.2024.103997
Mariano Pierantozzi , Zahra Rahmani , Shahin Khosharay
{"title":"Modeling surface tension of ten binary cryogenic mixtures with a thermodynamic method and artificial neural network","authors":"Mariano Pierantozzi ,&nbsp;Zahra Rahmani ,&nbsp;Shahin Khosharay","doi":"10.1016/j.cryogenics.2024.103997","DOIUrl":null,"url":null,"abstract":"<div><div>The phase equilibrium calculations between the liquid and surface phase are conducted to predict the surface tension and interfacial mole fractions of the components for ten binary cryogenic systems. This thermodynamic model is combined with the perturbed chain statistical association fluid theory equation of state to determine the fugacity coefficients and molar volumes of the components. Based on the application of molar or partial molar volumes, 4 different strategies are applied to the molar surface area of this model. The results of the thermodynamic model indicate that the first strategy has the best predictions for most cases. Then an artificial neural network has been applied to the surface tension of these ten mixtures. This model contains four input parameters and 9 neurons with a single layer. The overall good predictive capability of the artificial neural network model is proved with an R<sup>2</sup> of 0.999 and an AAD<sub>γ</sub>% of 0.94 for the entire dataset.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"145 ","pages":"Article 103997"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524002170","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The phase equilibrium calculations between the liquid and surface phase are conducted to predict the surface tension and interfacial mole fractions of the components for ten binary cryogenic systems. This thermodynamic model is combined with the perturbed chain statistical association fluid theory equation of state to determine the fugacity coefficients and molar volumes of the components. Based on the application of molar or partial molar volumes, 4 different strategies are applied to the molar surface area of this model. The results of the thermodynamic model indicate that the first strategy has the best predictions for most cases. Then an artificial neural network has been applied to the surface tension of these ten mixtures. This model contains four input parameters and 9 neurons with a single layer. The overall good predictive capability of the artificial neural network model is proved with an R2 of 0.999 and an AADγ% of 0.94 for the entire dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
期刊最新文献
Numerical and experimental study of transport AC losses in Bi-2223 stacked conductors Influence of cryogenic temperatures on DC surface flashover characteristics of BNNS-based epoxy nanocomposites An improved thermal analysis method for vapor-cooled current leads considering convective heat transfer efficiency Modelling the thermal buffer behavior of JT-60SA in case of pulsed heat loads Liquid nitrogen spray injection for direct-contact freeze concentration applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1