From insoluble to soluble: An overview of processing methods for dietary fibers in okara

IF 15.1 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Trends in Food Science & Technology Pub Date : 2025-02-01 DOI:10.1016/j.tifs.2024.104861
Robert Spiess, Stephanie Jeske, Mario Arcari, Christoph Denkel
{"title":"From insoluble to soluble: An overview of processing methods for dietary fibers in okara","authors":"Robert Spiess,&nbsp;Stephanie Jeske,&nbsp;Mario Arcari,&nbsp;Christoph Denkel","doi":"10.1016/j.tifs.2024.104861","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Dietary fibers are commonly categorized as water-soluble (SDF) or water-insoluble (IDF) dietary fibers. SDF possesses more favorable techno-functional and textural features than IDF. Consequently, many different modification procedures have been suggested to increase the SDF content in various matrices, such as okara, an IDF-rich side stream from soy milk production.</div></div><div><h3>Scope and Approach:</h3><div>The present review summarizes the treatments reported until August 2024 to increase SDF in okara and systematically compares their efficiencies.</div></div><div><h3>Key Findings and Conclusions:</h3><div>Biological treatments resulted in the lowest increase in SDF followed by chemical treatments. Physical treatment techniques were very diverse, and some were found to be extremely efficient. They increased the SDF content five- to nine-fold, with size reduction being the most efficient treatment. Selected combinations of techniques boosted the SDF content even more. Most efficient were steam explosion (a subcategory of size reduction treatments) alone or in combination with enzymatic treatment, which increased SDF from 3.5 to 31.9% DM on average, and the alkaline treatment of extruded okara, which increased SDF from 2.8 to 34.1% DM.</div><div>Although current treatments achieve high final SDF amounts, one-third of the measured fiber content remains insoluble. This limitation could be addressed by a sound understanding of the structure of the SDF-containing composites and of the dietary fibers themselves, which could enable the design of treatments optimized for higher SDF contents. Higher SDF contents can improve the techno-functional and nutritional properties, as well as the economic value of okara.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"156 ","pages":"Article 104861"},"PeriodicalIF":15.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224424005375","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background:

Dietary fibers are commonly categorized as water-soluble (SDF) or water-insoluble (IDF) dietary fibers. SDF possesses more favorable techno-functional and textural features than IDF. Consequently, many different modification procedures have been suggested to increase the SDF content in various matrices, such as okara, an IDF-rich side stream from soy milk production.

Scope and Approach:

The present review summarizes the treatments reported until August 2024 to increase SDF in okara and systematically compares their efficiencies.

Key Findings and Conclusions:

Biological treatments resulted in the lowest increase in SDF followed by chemical treatments. Physical treatment techniques were very diverse, and some were found to be extremely efficient. They increased the SDF content five- to nine-fold, with size reduction being the most efficient treatment. Selected combinations of techniques boosted the SDF content even more. Most efficient were steam explosion (a subcategory of size reduction treatments) alone or in combination with enzymatic treatment, which increased SDF from 3.5 to 31.9% DM on average, and the alkaline treatment of extruded okara, which increased SDF from 2.8 to 34.1% DM.
Although current treatments achieve high final SDF amounts, one-third of the measured fiber content remains insoluble. This limitation could be addressed by a sound understanding of the structure of the SDF-containing composites and of the dietary fibers themselves, which could enable the design of treatments optimized for higher SDF contents. Higher SDF contents can improve the techno-functional and nutritional properties, as well as the economic value of okara.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Food Science & Technology
Trends in Food Science & Technology 工程技术-食品科技
CiteScore
32.50
自引率
2.60%
发文量
322
审稿时长
37 days
期刊介绍: Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry. Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.
期刊最新文献
Precision nutrition based on food bioactive components assisted by delivery nanocarriers for ocular health Chemical compositions, health benefits, safety assessment, and industrial applications of wampee (Clausena lansium (Lour.) Skeels): A comprehensive review Yogurt volatile compounds as affected by processing and compositional factors: A review Substituent group-modified pectins: Targeted modifications for enhanced functional properties Potential of Antarctic krill (Euphausia superba) protein as a promising alternative resource for efficient production of surimi: Application and future perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1