Non-enzymatic electrochemical sensors based on nanostructured metal oxides for food quality assessment: A review

IF 15.1 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Trends in Food Science & Technology Pub Date : 2025-02-01 DOI:10.1016/j.tifs.2025.104881
G. Veerapandi , N. Lavanya , G. Neri , C. Sekar
{"title":"Non-enzymatic electrochemical sensors based on nanostructured metal oxides for food quality assessment: A review","authors":"G. Veerapandi ,&nbsp;N. Lavanya ,&nbsp;G. Neri ,&nbsp;C. Sekar","doi":"10.1016/j.tifs.2025.104881","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>In contemporary times, the global concern over food quality and food products looms large. The occurrence of even very minuscule hazardous chemicals and contaminants in food and water poses a significant threat, potentially leading to severe health repercussions and numerous foodborne illnesses. Conventional analytical methodologies towards the detection of food quality biomarkers have several drawbacks such as requirement of large volume of samples, skilled manpower, high cost and huge time consumption. On the other hand, nanotechnology enabled electrochemical sensors offer certain advantages including high sensitivity, selectivity, low detection limits, and portability for onsite food quality monitoring.</div></div><div><h3>Scope and approach</h3><div>The advent of nanotechnology offered the ability to prepare a variety of nanostructured metal oxides in large quantities with improved physico-chemical properties, particularly with high electrocatalytic ability without requiring additives or mediator. This review provides a summary of recent reports pertaining to non-enzymatic electrochemical detection of heavy metal ions, food additives, pesticides, vitamins, and biogenic amines in food items.</div></div><div><h3>Key findings and conclusions</h3><div>The present review indicated that there is a great potential for using nanostructured metal oxides (NMOs) based electrochemical sensors for food quality analyses through detection of a variety of relevant biomarkers over a wider concentration ranges and low detection limits. Moreover, most of the NMOs based sensors work at room temperature and biological pH. Considering the non-enzymatic nature of the sensors, it is postulated that an electrode array can be designed for rapid and simultaneous analyses of a number of food biomarkers.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"156 ","pages":"Article 104881"},"PeriodicalIF":15.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224425000172","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

In contemporary times, the global concern over food quality and food products looms large. The occurrence of even very minuscule hazardous chemicals and contaminants in food and water poses a significant threat, potentially leading to severe health repercussions and numerous foodborne illnesses. Conventional analytical methodologies towards the detection of food quality biomarkers have several drawbacks such as requirement of large volume of samples, skilled manpower, high cost and huge time consumption. On the other hand, nanotechnology enabled electrochemical sensors offer certain advantages including high sensitivity, selectivity, low detection limits, and portability for onsite food quality monitoring.

Scope and approach

The advent of nanotechnology offered the ability to prepare a variety of nanostructured metal oxides in large quantities with improved physico-chemical properties, particularly with high electrocatalytic ability without requiring additives or mediator. This review provides a summary of recent reports pertaining to non-enzymatic electrochemical detection of heavy metal ions, food additives, pesticides, vitamins, and biogenic amines in food items.

Key findings and conclusions

The present review indicated that there is a great potential for using nanostructured metal oxides (NMOs) based electrochemical sensors for food quality analyses through detection of a variety of relevant biomarkers over a wider concentration ranges and low detection limits. Moreover, most of the NMOs based sensors work at room temperature and biological pH. Considering the non-enzymatic nature of the sensors, it is postulated that an electrode array can be designed for rapid and simultaneous analyses of a number of food biomarkers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Food Science & Technology
Trends in Food Science & Technology 工程技术-食品科技
CiteScore
32.50
自引率
2.60%
发文量
322
审稿时长
37 days
期刊介绍: Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry. Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.
期刊最新文献
Precision nutrition based on food bioactive components assisted by delivery nanocarriers for ocular health Chemical compositions, health benefits, safety assessment, and industrial applications of wampee (Clausena lansium (Lour.) Skeels): A comprehensive review Yogurt volatile compounds as affected by processing and compositional factors: A review Substituent group-modified pectins: Targeted modifications for enhanced functional properties Potential of Antarctic krill (Euphausia superba) protein as a promising alternative resource for efficient production of surimi: Application and future perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1