Boosting oxygen evolution of LiCoO2 electrocatalysts via lithium defect

Huamei Li , Mengyuan Li , Lingling Liao , Han Yang , Kun Xiang , Guoqiang Luo , Mingjiang Xie
{"title":"Boosting oxygen evolution of LiCoO2 electrocatalysts via lithium defect","authors":"Huamei Li ,&nbsp;Mengyuan Li ,&nbsp;Lingling Liao ,&nbsp;Han Yang ,&nbsp;Kun Xiang ,&nbsp;Guoqiang Luo ,&nbsp;Mingjiang Xie","doi":"10.1016/j.mtcata.2024.100087","DOIUrl":null,"url":null,"abstract":"<div><div>The challenge of the complex oxygen evolution reaction (OER) currently impedes the efficient production of hydrogen via electrolytic water splitting. To address this issue, the development and improvement of effective electrocatalysts are required. LiCoO<sub>2</sub>, a key material in lithium-ion batteries, has shown promising potential as an electrocatalyst for electrochemical energy conversion. However, OER catalysts derived from LiCoO<sub>2</sub> have faced obstacles such as high overpotential and a complicated preparation process. In this study, the preparation method is adjusted to optimize the synthesis of Li<sub>1-x</sub>CoO<sub>2</sub> with a defective structure, resulting in an impressive overpotential of only 290 mV at a current density of 100 mA cm<sup>−2</sup> and a remarkable Tafel slope of 15.2 mV dec<sup>−1</sup>. The exceptional catalytic activity of Li<sub>1-x</sub>CoO<sub>2</sub> can be attributed to the absence of Li, which triggers oxidative alterations in the electronic structure of Co. Density functional theory (DFT) calculations reveal that Li defects can influence the d-band center of active Co sites, enhancing the adsorption capabilities of Co sites towards *OOH intermediates and increasing the conductivity of the electrocatalyst during the OER process. These alterations improve the velocity of the crucial step in the reaction, ultimately boosting the catalyst's overall performance and efficiency.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of the complex oxygen evolution reaction (OER) currently impedes the efficient production of hydrogen via electrolytic water splitting. To address this issue, the development and improvement of effective electrocatalysts are required. LiCoO2, a key material in lithium-ion batteries, has shown promising potential as an electrocatalyst for electrochemical energy conversion. However, OER catalysts derived from LiCoO2 have faced obstacles such as high overpotential and a complicated preparation process. In this study, the preparation method is adjusted to optimize the synthesis of Li1-xCoO2 with a defective structure, resulting in an impressive overpotential of only 290 mV at a current density of 100 mA cm−2 and a remarkable Tafel slope of 15.2 mV dec−1. The exceptional catalytic activity of Li1-xCoO2 can be attributed to the absence of Li, which triggers oxidative alterations in the electronic structure of Co. Density functional theory (DFT) calculations reveal that Li defects can influence the d-band center of active Co sites, enhancing the adsorption capabilities of Co sites towards *OOH intermediates and increasing the conductivity of the electrocatalyst during the OER process. These alterations improve the velocity of the crucial step in the reaction, ultimately boosting the catalyst's overall performance and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1