Modulating the sulfurization procedure to decrease by-product formation for one-step catalytic synthesis of sulfur-containing chemicals

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Fuel Processing Technology Pub Date : 2025-01-30 DOI:10.1016/j.fuproc.2025.108184
ZhiZhi Xu , Jian Fang , Min Luo , Dedong He , Dingkai Chen , Jichang Lu , Yongming Luo
{"title":"Modulating the sulfurization procedure to decrease by-product formation for one-step catalytic synthesis of sulfur-containing chemicals","authors":"ZhiZhi Xu ,&nbsp;Jian Fang ,&nbsp;Min Luo ,&nbsp;Dedong He ,&nbsp;Dingkai Chen ,&nbsp;Jichang Lu ,&nbsp;Yongming Luo","doi":"10.1016/j.fuproc.2025.108184","DOIUrl":null,"url":null,"abstract":"<div><div>The one-step synthesis of sulfur-containing chemicals, methanethiol (CH<sub>3</sub>SH), from syngas and hydrogen sullfide (H<sub>2</sub>S) mixtures shows the enormous potential for extending the application of both C<sub>1</sub> chemistry and sulfur resource recycling and utilization. However, directionally regulating the reaction pathway for synthesizing target sulfur-containing chemicals remain challenging owing to the presence of multiple reactants and the following various competitive side reactions. Herein, we propose a facile and simple sulfurization procedure-dependent strategies to regulate the Mo-S(<img>O) bond strength of K-MoS<sub>2</sub> catalysts for highly selective CO-to-CH<sub>3</sub>SH catalysis. The activity tests, the characterization results and in situ DRIFTS technique demonstrate that a slower sulfurization heating rate and abundant-reduced sulfurization atmosphere facilitate the formation of K-intercalated 1 T-MoS<sub>2</sub> phase, which possesses a weaker Mo-S(<img>O) bond than that of C<img>O bond in CO molecules. This weakened bonding pattern is advantageous to the CO non-dissociative activation to from <sup>⁎</sup>COS species, and the further hydrogenation of adsorbed <sup>⁎</sup>COS and <sup>⁎</sup>CH<sub>x</sub>S species to main product of CH<sub>3</sub>SH. Otherwise, the strong bonding of Mo-S(<img>O) bond with CO molecule over K-decorated 2H-MoS<sub>2</sub> phase can lead to the breakage of C<img>O bond, promoting the formation of CH<sub>x</sub> species and the occurrence of methanation side reaction. This strategy could provide the useful guidance for the fine regulation of the main and side reaction pathway for producing important chemicals from carbon and sulfur basic materials.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"268 ","pages":"Article 108184"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025000086","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The one-step synthesis of sulfur-containing chemicals, methanethiol (CH3SH), from syngas and hydrogen sullfide (H2S) mixtures shows the enormous potential for extending the application of both C1 chemistry and sulfur resource recycling and utilization. However, directionally regulating the reaction pathway for synthesizing target sulfur-containing chemicals remain challenging owing to the presence of multiple reactants and the following various competitive side reactions. Herein, we propose a facile and simple sulfurization procedure-dependent strategies to regulate the Mo-S(O) bond strength of K-MoS2 catalysts for highly selective CO-to-CH3SH catalysis. The activity tests, the characterization results and in situ DRIFTS technique demonstrate that a slower sulfurization heating rate and abundant-reduced sulfurization atmosphere facilitate the formation of K-intercalated 1 T-MoS2 phase, which possesses a weaker Mo-S(O) bond than that of CO bond in CO molecules. This weakened bonding pattern is advantageous to the CO non-dissociative activation to from COS species, and the further hydrogenation of adsorbed COS and CHxS species to main product of CH3SH. Otherwise, the strong bonding of Mo-S(O) bond with CO molecule over K-decorated 2H-MoS2 phase can lead to the breakage of CO bond, promoting the formation of CHx species and the occurrence of methanation side reaction. This strategy could provide the useful guidance for the fine regulation of the main and side reaction pathway for producing important chemicals from carbon and sulfur basic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
期刊最新文献
A review of chemical viscosity reducers for heavy oil: Advances and application strategies Editorial Board Bio-carbon composite for supercapacitor electrodes: Harnessing hydrochar frameworks and bio-tar polymerization Insight in the phenomena included in loss of the activation of industrial hydrotreating catalyst through an innovative accelerated deactivation procedure and kinetic modeling Modulating the sulfurization procedure to decrease by-product formation for one-step catalytic synthesis of sulfur-containing chemicals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1