{"title":"Towards integrated thermal management systems in battery electric vehicles: A review","authors":"Xiaoya Li, Ruzhu Wang","doi":"10.1016/j.etran.2025.100396","DOIUrl":null,"url":null,"abstract":"<div><div>The market expansion of battery electric vehicles has stimulated the development of advanced vehicle thermal management systems to address the complicated thermal challenges of the batteries, cabin, motors, and power electronics across various driving conditions and ambient temperatures. This review comprehensively summarizes the key technologies underlying the distributed thermal management systems, addressing the specific heating and cooling requirements of each subsystem. The strengths and limitations of the individual thermal management approaches have been compared. Furthermore, the review highlights the progress in integrated thermal management systems (ITMS) for BEVs, examining configuration integration–classified into airflow, indirect secondary-loop, and direct refrigerant-side integration–and information integration within the context of connected and automated vehicles. The challenges and opportunities associated with the ITMS have also been critically discussed, in terms of the system configuration, refrigerant selection, intelligent integration, advanced battery technologies, and performance evaluation. This review aims to stimulate interest and debate in both academia and industries, contributing to the evolution of compact, efficient, and intelligent ITMS for battery electric vehicles.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"24 ","pages":"Article 100396"},"PeriodicalIF":15.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000037","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The market expansion of battery electric vehicles has stimulated the development of advanced vehicle thermal management systems to address the complicated thermal challenges of the batteries, cabin, motors, and power electronics across various driving conditions and ambient temperatures. This review comprehensively summarizes the key technologies underlying the distributed thermal management systems, addressing the specific heating and cooling requirements of each subsystem. The strengths and limitations of the individual thermal management approaches have been compared. Furthermore, the review highlights the progress in integrated thermal management systems (ITMS) for BEVs, examining configuration integration–classified into airflow, indirect secondary-loop, and direct refrigerant-side integration–and information integration within the context of connected and automated vehicles. The challenges and opportunities associated with the ITMS have also been critically discussed, in terms of the system configuration, refrigerant selection, intelligent integration, advanced battery technologies, and performance evaluation. This review aims to stimulate interest and debate in both academia and industries, contributing to the evolution of compact, efficient, and intelligent ITMS for battery electric vehicles.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.