Elien Beyls , Somara De Beul , Victoria Bordon , Alina Ferster , Filomeen Haerynck , Anne Vral , Ans Baeyens
{"title":"Fibroblast-based radiosensitivity assays as a clinically valuable tool for (severe) combined immunodeficiency syndromes","authors":"Elien Beyls , Somara De Beul , Victoria Bordon , Alina Ferster , Filomeen Haerynck , Anne Vral , Ans Baeyens","doi":"10.1016/j.mrgentox.2025.503852","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic defects in one of the DNA double strand break (DSB) repair proteins lead to distinct human syndromes with severe clinical manifestations, including impaired neurological and immunological development, cancer proneness and sensitivity to ionizing radiation. Since diagnostic and therapeutic procedures frequently use DNA damaging agents, identification of radiosensitive individuals is imperative to optimize patient management. However, patients with a (severe) combined immunodeficiency (S)CID are often ineligible for lymphocyte-based radiosensitivity testing. Therefore, this study investigated the suitability of two fibroblast-based assays as alternative methods. DSB repair was evaluated following X-ray irradiation by an optimized cytokinesis-block micronucleus (MN) assay and the γH2AX focus test in fibroblasts from patients with a confirmed or suspected diagnosis of radiosensitive (S)CID. Using both assays, patients with a defect in Artemis were identified as radiosensitive while those with a RAG1/2 deficiency were not considered as radiosensitive. Although MN scoring was not feasible in irradiated fibroblasts deficient in XLF, LIG4 or NBS1, radiosensitivity could be readily demonstrated through impaired DNA DSB repair kinetics with the γH2AX focus assay in fibroblasts deficient in XLF or LIG4, but not in those deficient in NBS1. While both ATM defective fibroblasts clearly showed increased radiation-induced MN yields, one of the two fibroblast cell lines could not be identified as radiosensitive based on residual γH2AX focus levels. This study suggests that combining the fibroblast MN assay and γH2AX focus test can effectively exclude <em>in vitro</em> radiosensitivity in patients with a suspicion of radiosensitive (S)CID, particularly when lymphocyte-based radiosensitivity testing is not feasible.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"902 ","pages":"Article 503852"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571825000117","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic defects in one of the DNA double strand break (DSB) repair proteins lead to distinct human syndromes with severe clinical manifestations, including impaired neurological and immunological development, cancer proneness and sensitivity to ionizing radiation. Since diagnostic and therapeutic procedures frequently use DNA damaging agents, identification of radiosensitive individuals is imperative to optimize patient management. However, patients with a (severe) combined immunodeficiency (S)CID are often ineligible for lymphocyte-based radiosensitivity testing. Therefore, this study investigated the suitability of two fibroblast-based assays as alternative methods. DSB repair was evaluated following X-ray irradiation by an optimized cytokinesis-block micronucleus (MN) assay and the γH2AX focus test in fibroblasts from patients with a confirmed or suspected diagnosis of radiosensitive (S)CID. Using both assays, patients with a defect in Artemis were identified as radiosensitive while those with a RAG1/2 deficiency were not considered as radiosensitive. Although MN scoring was not feasible in irradiated fibroblasts deficient in XLF, LIG4 or NBS1, radiosensitivity could be readily demonstrated through impaired DNA DSB repair kinetics with the γH2AX focus assay in fibroblasts deficient in XLF or LIG4, but not in those deficient in NBS1. While both ATM defective fibroblasts clearly showed increased radiation-induced MN yields, one of the two fibroblast cell lines could not be identified as radiosensitive based on residual γH2AX focus levels. This study suggests that combining the fibroblast MN assay and γH2AX focus test can effectively exclude in vitro radiosensitivity in patients with a suspicion of radiosensitive (S)CID, particularly when lymphocyte-based radiosensitivity testing is not feasible.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.