Eren Ozcagli , Esma Soylemez Yesilcimen , Gulden Zehra Omurtag
{"title":"What are the effects of whole blood storage conditions on comet assay in terms of DNA damage and repair?","authors":"Eren Ozcagli , Esma Soylemez Yesilcimen , Gulden Zehra Omurtag","doi":"10.1016/j.mrgentox.2025.503851","DOIUrl":null,"url":null,"abstract":"<div><div>The comet assay is a rapid, simple and sensitive method for the detection of DNA damage and repair at the level of individual cells, with a wide range of applications in human biomonitoring and molecular epidemiology. It is common practice to perform the comet assay on fresh samples to preserve the integrity of the DNA and to obtain reliable results, which is why most published studies have been designed using fresh blood samples. There are limitations associated with the use of fresh samples for this assay and the need for appropriate storage for some studies. The aim of this study was to determine changes in DNA damage and DNA repair kinetics during medium- and long-term storage of human whole blood (WB) samples without adding cryopreservatives. Whole blood samples were divided into small portions and tested after overnight storage at + 4 °C. Frozen samples were stored at −20 and −80 °C for 3 different time points: 30, 90 and 180 days. Frozen samples were compared with fresh samples stored at + 4 °C in terms of DNA damage and repair. For WB samples stored at −80 °C, showed an increase in purine base damage (PBD) and DNA repair alterations were determined while no increase in basal DNA damage was observed. According to the results of our study, storage of WB samples for comet assay in small portions at −20 °C for up to 90 days does not cause any additional damage and does not cause any alter DNA repair kinetics.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"902 ","pages":"Article 503851"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571825000105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The comet assay is a rapid, simple and sensitive method for the detection of DNA damage and repair at the level of individual cells, with a wide range of applications in human biomonitoring and molecular epidemiology. It is common practice to perform the comet assay on fresh samples to preserve the integrity of the DNA and to obtain reliable results, which is why most published studies have been designed using fresh blood samples. There are limitations associated with the use of fresh samples for this assay and the need for appropriate storage for some studies. The aim of this study was to determine changes in DNA damage and DNA repair kinetics during medium- and long-term storage of human whole blood (WB) samples without adding cryopreservatives. Whole blood samples were divided into small portions and tested after overnight storage at + 4 °C. Frozen samples were stored at −20 and −80 °C for 3 different time points: 30, 90 and 180 days. Frozen samples were compared with fresh samples stored at + 4 °C in terms of DNA damage and repair. For WB samples stored at −80 °C, showed an increase in purine base damage (PBD) and DNA repair alterations were determined while no increase in basal DNA damage was observed. According to the results of our study, storage of WB samples for comet assay in small portions at −20 °C for up to 90 days does not cause any additional damage and does not cause any alter DNA repair kinetics.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.