Barney H. Miao , Daniel Woo , Darius Javan , Edward J. Garboczi , Robert J. Headrick , Andrew C. Lesh , Zhiye Li , David J. Loftus , Michael D. Lepech
{"title":"Recycling of lignin-based biocomposites: Improving sustainability and enhancing material strength","authors":"Barney H. Miao , Daniel Woo , Darius Javan , Edward J. Garboczi , Robert J. Headrick , Andrew C. Lesh , Zhiye Li , David J. Loftus , Michael D. Lepech","doi":"10.1016/j.resconrec.2024.108104","DOIUrl":null,"url":null,"abstract":"<div><div>Biopolymer-bound soil composites (BSC) are a novel class of cement-free building materials using biopolymer binders, many of which are sourced from the waste streams of major industries. This study investigates the recyclability of one particular BSC that uses kraft lignin as the biopolymer. Re-manufacturing of BSC was accomplished by mechanical disruption of the virgin material, followed by re-introduction of solvent, remixing, and remolding. The compressive strength of recycled lignin-based BSC was higher than that of BSC made with virgin ingredients. To understand the microstructure of lignin-based BSC, a series of X-ray micro-CT images of the test articles were obtained. Images produced by the micro-CT method reveal differences in the microstructure of the re-manufactured specimens indicating an enhancement of the association between lignin and aggregate particles. This study demonstrates the feasibility of recycling BSC and provides insight into the importance of biopolymer-aggregate association in determining the mechanical properties of BSC.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"215 ","pages":"Article 108104"},"PeriodicalIF":11.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924006943","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biopolymer-bound soil composites (BSC) are a novel class of cement-free building materials using biopolymer binders, many of which are sourced from the waste streams of major industries. This study investigates the recyclability of one particular BSC that uses kraft lignin as the biopolymer. Re-manufacturing of BSC was accomplished by mechanical disruption of the virgin material, followed by re-introduction of solvent, remixing, and remolding. The compressive strength of recycled lignin-based BSC was higher than that of BSC made with virgin ingredients. To understand the microstructure of lignin-based BSC, a series of X-ray micro-CT images of the test articles were obtained. Images produced by the micro-CT method reveal differences in the microstructure of the re-manufactured specimens indicating an enhancement of the association between lignin and aggregate particles. This study demonstrates the feasibility of recycling BSC and provides insight into the importance of biopolymer-aggregate association in determining the mechanical properties of BSC.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.