Nan-Yang Zhao , Bin Xue , Ming-Yang Su , Zhong-Bin Xu , Qiong Wu , Jing Zhou
{"title":"Significance of viscous dissipation effect during the rapid filling process in the non-adiabatic mold: A full analytical and validating solution","authors":"Nan-Yang Zhao , Bin Xue , Ming-Yang Su , Zhong-Bin Xu , Qiong Wu , Jing Zhou","doi":"10.1016/j.jnnfm.2024.105378","DOIUrl":null,"url":null,"abstract":"<div><div>The thorough analysis of thermal effects in the interior of molds enhances the understanding of the role and evolution of flow-thermal interactions during injection molding. However, current methods that incorporate heating and insulation devices for detecting melt within molds do not accurately reflect actual manufacturing environments. The non-isothermal conditions in molds also complicate the quantitative analysis of thermal effects, posing challenges for in-mold analysis. In this study, we proposed a comprehensive analytical and validation approach to investigate the significance of viscous dissipation in a non-adiabatic mold during injection molding. Channel dimensions (fixed length of 25 mm, radii of 0.75–1.5 mm) and melt velocities (25–150 mm s<sup>−1</sup>) were adjusted to observe pressure drop variations (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>P</mi><mtext>en</mtext></msub></mrow></math></span>) in a special-designed mold. An equivalent pressure concept (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>P</mi><mtext>vis</mtext></msub></mrow></math></span>) was proposed to assess temperature variations induced by viscous dissipation. Dimensionless indices related to channel dimensions (<span><math><msub><mi>I</mi><mrow><mi>P</mi><mo>_</mo><mi>R</mi></mrow></msub></math></span> and <span><math><msub><mi>I</mi><mrow><mtext>Pcor</mtext><mo>_</mo><mi>R</mi></mrow></msub></math></span>) and melt injection velocities (<span><math><msub><mi>I</mi><mrow><mi>P</mi><mo>_</mo><mi>v</mi></mrow></msub></math></span> and <span><math><msub><mi>I</mi><mrow><mtext>Pcor</mtext><mo>_</mo><mi>v</mi></mrow></msub></math></span>) were established to observe pressure drop (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>P</mi><mtext>en</mtext></msub></mrow></math></span>) and corrected pressure drop (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>P</mi><mtext>cor</mtext></msub></mrow></math></span>). The results indicate that the corrected pressure drop and viscosity curves (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>P</mi><mtext>cor</mtext></msub></mrow></math></span> and <span><math><msub><mi>η</mi><mtext>cor</mtext></msub></math></span>) show more consistent variations versus channel dimensions and melt velocities when the viscous dissipation effect is quantitatively incorporated into melt pressure and viscosity analyses (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>P</mi><mtext>en</mtext></msub></mrow></math></span> and <span><math><mi>η</mi></math></span>), aligning closely with observations under adiabatic conditions. Thermal-related dimensionless numbers (Eckert, Brinkman, and Peclet numbers) qualitatively confirm the significance of viscous dissipation. This study offers a comprehensive analysis and validation of thermal effects in mold, presenting a novel method for exploring specific melt behaviors and advancing the analysis of mold interiors in non-adiabatic environments.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"336 ","pages":"Article 105378"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001940","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The thorough analysis of thermal effects in the interior of molds enhances the understanding of the role and evolution of flow-thermal interactions during injection molding. However, current methods that incorporate heating and insulation devices for detecting melt within molds do not accurately reflect actual manufacturing environments. The non-isothermal conditions in molds also complicate the quantitative analysis of thermal effects, posing challenges for in-mold analysis. In this study, we proposed a comprehensive analytical and validation approach to investigate the significance of viscous dissipation in a non-adiabatic mold during injection molding. Channel dimensions (fixed length of 25 mm, radii of 0.75–1.5 mm) and melt velocities (25–150 mm s−1) were adjusted to observe pressure drop variations () in a special-designed mold. An equivalent pressure concept () was proposed to assess temperature variations induced by viscous dissipation. Dimensionless indices related to channel dimensions ( and ) and melt injection velocities ( and ) were established to observe pressure drop () and corrected pressure drop (). The results indicate that the corrected pressure drop and viscosity curves ( and ) show more consistent variations versus channel dimensions and melt velocities when the viscous dissipation effect is quantitatively incorporated into melt pressure and viscosity analyses ( and ), aligning closely with observations under adiabatic conditions. Thermal-related dimensionless numbers (Eckert, Brinkman, and Peclet numbers) qualitatively confirm the significance of viscous dissipation. This study offers a comprehensive analysis and validation of thermal effects in mold, presenting a novel method for exploring specific melt behaviors and advancing the analysis of mold interiors in non-adiabatic environments.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.