Xiaoyang Xu , Lingyun Tian , Yijie Sun , Jiangnan Kang
{"title":"2D and 3D SPH simulations of transient non-isothermal viscoelastic injection molding process with complex-shaped cavities","authors":"Xiaoyang Xu , Lingyun Tian , Yijie Sun , Jiangnan Kang","doi":"10.1016/j.jnnfm.2024.105377","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, we introduce a smoothed particle hydrodynamics (SPH) method for simulating both 2D and 3D transient non-isothermal viscoelastic injection molding process with complex-shaped cavities. To delineate the viscoelastic properties of the polymer melt, the non-isothermal Oldroyd-B constitutive equation is considered based on the time–temperature superposition principle. To discretize the governing equations, the improved SPH scheme presented by Xu and Jiang, J. Non-Newtonian Fluid Mech. 309 (2022) pp. 104,905 is employed. To model the wall boundaries of complex shapes, an enhanced treatment technique of wall boundaries that utilizes a level-set based pre-processing algorithm is introduced. Initially, the method is applied to simulate a 2D non-isothermal viscoelastic injection molding process involving a circular disc with an irregular insert. The convergence of the method is validated by three different particle sizes. Results on the velocity, temperature, and the first normal stress difference during the injection molding process are presented. The influences of the Péclet, Reynolds, Weissenberg numbers, and viscosity ratio on the process are analyzed. The method is then extended to handle challenging 3D non-isothermal viscoelastic injection molding problems, including cavities of a hexagon screw and a car rim. Change in rheological information at various time points is reported. All the results demonstrate that the proposed SPH method is a robust computation tool for simulations of both 2D and 3D transient non-isothermal viscoelastic injection molding processes, even with highly complex-shaped cavities.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"336 ","pages":"Article 105377"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001939","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, we introduce a smoothed particle hydrodynamics (SPH) method for simulating both 2D and 3D transient non-isothermal viscoelastic injection molding process with complex-shaped cavities. To delineate the viscoelastic properties of the polymer melt, the non-isothermal Oldroyd-B constitutive equation is considered based on the time–temperature superposition principle. To discretize the governing equations, the improved SPH scheme presented by Xu and Jiang, J. Non-Newtonian Fluid Mech. 309 (2022) pp. 104,905 is employed. To model the wall boundaries of complex shapes, an enhanced treatment technique of wall boundaries that utilizes a level-set based pre-processing algorithm is introduced. Initially, the method is applied to simulate a 2D non-isothermal viscoelastic injection molding process involving a circular disc with an irregular insert. The convergence of the method is validated by three different particle sizes. Results on the velocity, temperature, and the first normal stress difference during the injection molding process are presented. The influences of the Péclet, Reynolds, Weissenberg numbers, and viscosity ratio on the process are analyzed. The method is then extended to handle challenging 3D non-isothermal viscoelastic injection molding problems, including cavities of a hexagon screw and a car rim. Change in rheological information at various time points is reported. All the results demonstrate that the proposed SPH method is a robust computation tool for simulations of both 2D and 3D transient non-isothermal viscoelastic injection molding processes, even with highly complex-shaped cavities.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.