Interplay between complex fluid rheology and wall compliance in the flow resistance of deformable axisymmetric configurations

IF 2.7 2区 工程技术 Q2 MECHANICS Journal of Non-Newtonian Fluid Mechanics Pub Date : 2025-02-01 DOI:10.1016/j.jnnfm.2024.105380
Evgeniy Boyko
{"title":"Interplay between complex fluid rheology and wall compliance in the flow resistance of deformable axisymmetric configurations","authors":"Evgeniy Boyko","doi":"10.1016/j.jnnfm.2024.105380","DOIUrl":null,"url":null,"abstract":"<div><div>Viscous flows through configurations fabricated from soft materials exert stresses at the solid–liquid interface, leading to a coupling between the flow field and the elastic deformation. The resulting fluid–structure interaction affects the relationship between the pressure drop <span><math><mrow><mi>Δ</mi><mi>p</mi></mrow></math></span> and the flow rate <span><math><mi>q</mi></math></span>, or the corresponding flow resistance <span><math><mrow><mi>Δ</mi><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span>. While the flow resistance in deformable configurations has been extensively studied for Newtonian fluids, it remains largely unexplored for non-Newtonian fluids even at low Reynolds numbers. We analyze the steady low-Reynolds-number fluid–structure interaction between the flow of a non-Newtonian fluid and a deformable tube. We present a theoretical framework for calculating the leading-order effect of the complex fluid rheology and wall compliance on the flow resistance, which holds for a wide class of non-Newtonian constitutive models. For the weakly non-Newtonian limit, our theory provides the first-order non-Newtonian correction for the flow resistance solely using the known Newtonian solution for a deformable tube, bypassing the detailed calculations of the non-Newtonian fluid–structure-interaction problem. We illustrate our approach for a weakly viscoelastic Oldroyd-B fluid and a weakly shear-thinning Carreau fluid. In particular, we show analytically that both the viscoelasticity and shear thinning of the fluid and the compliance of the deformable tube decrease the flow resistance in the weakly non-Newtonian limit and identify the physical mechanisms governing this reduction.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"336 ","pages":"Article 105380"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001964","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Viscous flows through configurations fabricated from soft materials exert stresses at the solid–liquid interface, leading to a coupling between the flow field and the elastic deformation. The resulting fluid–structure interaction affects the relationship between the pressure drop Δp and the flow rate q, or the corresponding flow resistance Δp/q. While the flow resistance in deformable configurations has been extensively studied for Newtonian fluids, it remains largely unexplored for non-Newtonian fluids even at low Reynolds numbers. We analyze the steady low-Reynolds-number fluid–structure interaction between the flow of a non-Newtonian fluid and a deformable tube. We present a theoretical framework for calculating the leading-order effect of the complex fluid rheology and wall compliance on the flow resistance, which holds for a wide class of non-Newtonian constitutive models. For the weakly non-Newtonian limit, our theory provides the first-order non-Newtonian correction for the flow resistance solely using the known Newtonian solution for a deformable tube, bypassing the detailed calculations of the non-Newtonian fluid–structure-interaction problem. We illustrate our approach for a weakly viscoelastic Oldroyd-B fluid and a weakly shear-thinning Carreau fluid. In particular, we show analytically that both the viscoelasticity and shear thinning of the fluid and the compliance of the deformable tube decrease the flow resistance in the weakly non-Newtonian limit and identify the physical mechanisms governing this reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
期刊最新文献
Editorial Board Significance of viscous dissipation effect during the rapid filling process in the non-adiabatic mold: A full analytical and validating solution 2D and 3D SPH simulations of transient non-isothermal viscoelastic injection molding process with complex-shaped cavities Interplay between complex fluid rheology and wall compliance in the flow resistance of deformable axisymmetric configurations A new finite element formulation unifying fluid-structure and fluid-fluid interaction problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1