{"title":"Accretion disk around the regular black holes with a nonlinear electrodynamics source","authors":"Minou Khoshrangbaf , Amin Rezaei Akbarieh , K. Atazadeh , Hossein Motavalli","doi":"10.1016/j.newast.2025.102354","DOIUrl":null,"url":null,"abstract":"<div><div>Accretion disks is crucial in studying black holes, serving as the singular source of electromagnetic radiation. The existence of singularity inherent in black holes necessitates an examination of regular cores. In this work, we study standard thin accretion disks around regular black holes (RBHs) with a nonlinear electrodynamics source. By comparing the radiant energy, luminosity derivative, and temperature of six types of RBHs with a nonlinear electrodynamics source, both among themselves and with Schwarzschild black holes, we aim to identify observable features. Our results show that the non-zero charge parameter of RBHs with a nonlinear electrodynamics source causes the radius of the innermost stable circular orbit of the accretion disk to be displaced inwards towards smaller values of <span><math><mi>r</mi></math></span>. We also obtain that the mass-to-radiant conversion efficiency for RBHs with a nonlinear electrodynamics source is higher than that of Schwarzschild black holes. Finally, we compare the free parameter of RBHs with a nonlinear electrodynamics source to the spin parameter of the Kerr black hole to extract potential observables. Our results indicate that the maximum spin that RBHs with a nonlinear electrodynamics source can mimic is approximately 0.9.</div></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"117 ","pages":"Article 102354"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138410762500003X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accretion disks is crucial in studying black holes, serving as the singular source of electromagnetic radiation. The existence of singularity inherent in black holes necessitates an examination of regular cores. In this work, we study standard thin accretion disks around regular black holes (RBHs) with a nonlinear electrodynamics source. By comparing the radiant energy, luminosity derivative, and temperature of six types of RBHs with a nonlinear electrodynamics source, both among themselves and with Schwarzschild black holes, we aim to identify observable features. Our results show that the non-zero charge parameter of RBHs with a nonlinear electrodynamics source causes the radius of the innermost stable circular orbit of the accretion disk to be displaced inwards towards smaller values of . We also obtain that the mass-to-radiant conversion efficiency for RBHs with a nonlinear electrodynamics source is higher than that of Schwarzschild black holes. Finally, we compare the free parameter of RBHs with a nonlinear electrodynamics source to the spin parameter of the Kerr black hole to extract potential observables. Our results indicate that the maximum spin that RBHs with a nonlinear electrodynamics source can mimic is approximately 0.9.
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.