MeerKAT-based multi-wavelength study of supernova remnant G7.7-3.7 (SN386?)

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS New Astronomy Pub Date : 2025-02-08 DOI:10.1016/j.newast.2025.102370
Patrick N. Mwaniki , James O. Chibueze , Dismas S. Wamalwa
{"title":"MeerKAT-based multi-wavelength study of supernova remnant G7.7-3.7 (SN386?)","authors":"Patrick N. Mwaniki ,&nbsp;James O. Chibueze ,&nbsp;Dismas S. Wamalwa","doi":"10.1016/j.newast.2025.102370","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the structural characteristics of G7.7-3.7 at a higher resolution of 1284 MHz. MeerKAT observations revealed that G7.7-3.7 had an asymmetric spherical structure with filamentary features and various blowouts. The western boundary showed a strong bright blowout, while the southern perimeter showcased extended bright filaments with feather-like structures, which seemed disconnected from the western blowout. Moreover, the eastern region exhibited a blowout centered around a bright point source, with faint, elongated filaments extending north-west. These filaments connected the eastern point source to the western blowout, creating a uniform outward progression. Spectral index analysis indicated a steep spectrum (<span><math><mi>α</mi></math></span> ranged <span><math><mo>∼</mo></math></span> 0 to <span><math><mo>∼</mo></math></span> −3), suggesting a combination of synchrotron and a few traces of thermal emissions concentrated at the edges of bright blowouts. Analysis of MeerKAT and VLA data revealed that G7.7-3.7 had expanded by 9 ± 0.45 arcsec over a period of 31.907 years, corresponding to an expansion rate of 0.282 ± 0.014 arcsec yr<sup>−1</sup>. This expansion indicated a shock speed of 5883 ± 294 km s<sup>−1</sup> and an age of 1636 ± 115 years. This age fits with the supernova explosion event of 386 CE and the MeerKAT observed data in 2023. The multi-wavelength investigation unveiled a distinctive structure within the southern radio blowout, encompassing a bright radio blowout, a prominent X-ray arc, and two faint optical filaments aligned with the X-ray bright arc. We attributed the bright radio blowouts to inhomogeneous mass outflow from shock-accelerated particles and the weakening of magnetic fields along its perimeter. Traces of thermal emissions, especially along the edges of blowouts, were likely due to shock-heated gas, which intensified in the southern region amid high-density Interstellar Medium (ISM). Therefore, these results supported a scenario in which the progenitor supernova of G7.7-3.7 exploded within ISM of varying density, generating the observed X-ray emissions and faint optical filaments. Our findings provided valuable insights into the dynamics and evolution of supernova remnants.</div></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"117 ","pages":"Article 102370"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107625000193","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the structural characteristics of G7.7-3.7 at a higher resolution of 1284 MHz. MeerKAT observations revealed that G7.7-3.7 had an asymmetric spherical structure with filamentary features and various blowouts. The western boundary showed a strong bright blowout, while the southern perimeter showcased extended bright filaments with feather-like structures, which seemed disconnected from the western blowout. Moreover, the eastern region exhibited a blowout centered around a bright point source, with faint, elongated filaments extending north-west. These filaments connected the eastern point source to the western blowout, creating a uniform outward progression. Spectral index analysis indicated a steep spectrum (α ranged 0 to −3), suggesting a combination of synchrotron and a few traces of thermal emissions concentrated at the edges of bright blowouts. Analysis of MeerKAT and VLA data revealed that G7.7-3.7 had expanded by 9 ± 0.45 arcsec over a period of 31.907 years, corresponding to an expansion rate of 0.282 ± 0.014 arcsec yr−1. This expansion indicated a shock speed of 5883 ± 294 km s−1 and an age of 1636 ± 115 years. This age fits with the supernova explosion event of 386 CE and the MeerKAT observed data in 2023. The multi-wavelength investigation unveiled a distinctive structure within the southern radio blowout, encompassing a bright radio blowout, a prominent X-ray arc, and two faint optical filaments aligned with the X-ray bright arc. We attributed the bright radio blowouts to inhomogeneous mass outflow from shock-accelerated particles and the weakening of magnetic fields along its perimeter. Traces of thermal emissions, especially along the edges of blowouts, were likely due to shock-heated gas, which intensified in the southern region amid high-density Interstellar Medium (ISM). Therefore, these results supported a scenario in which the progenitor supernova of G7.7-3.7 exploded within ISM of varying density, generating the observed X-ray emissions and faint optical filaments. Our findings provided valuable insights into the dynamics and evolution of supernova remnants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
期刊最新文献
Composite pseudo Nambu Goldstone quintessence Studying the nature of Ultraluminous X-ray sources in NGC 1453 with XMM-Newton MeerKAT-based multi-wavelength study of supernova remnant G7.7-3.7 (SN386?) Prospects for high-resolution probes of galaxy dynamics tracing background cosmology in MaNGA Accretion disk around the regular black holes with a nonlinear electrodynamics source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1