{"title":"Ensemble learning of soil–water characteristic curve for unsaturated seepage using physics-informed neural networks","authors":"Hao-Qing Yang , Chao Shi , Lulu Zhang","doi":"10.1016/j.sandf.2024.101556","DOIUrl":null,"url":null,"abstract":"<div><div>The determination of the soil–water characteristic curve (SWCC) is crucial for hydro-mechanical modelling and analysis of soil slopes. Conventional inverse analysis often relies on a predetermined SWCC model for parameter estimation. However, the selection of SWCC functions heavily relies on engineering judgement, which may be subjective and biased. Moreover, the estimation of multiple governing parameters for a preselected function form from limited site-specific data is a nontrivial task, particularly for inexperienced engineering practitioners. To explicitly address this challenge, this study proposes an ensemble learning framework that leverages physics-informed neural networks (PINN) for parameter estimation. Multiple representative SWCCs following different function forms are compiled, providing flexible learning bases to construct arbitrary SWCC. For a specific slope, the most compatible basis combination is adaptively selected based on limited site-specific measurements before being mobilized for forward predictions of hydraulic behavior. The proposed method is illustrated through a hypothetical example and a real slope project at Jalan Kukoh, Singapore. Results indicate that the ensemble learning framework can accurately estimate SWCC functions and the associated pore pressure distributions from limited measurements in a data-driven and physics-informed manner. The robustness of the method has also been demonstrated through a series of sensitivity analyses, showcasing the capability of PINN for unsaturated hydraulic seepage modelling and SWCC estimation during rainfall conditions.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 1","pages":"Article 101556"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624001343","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The determination of the soil–water characteristic curve (SWCC) is crucial for hydro-mechanical modelling and analysis of soil slopes. Conventional inverse analysis often relies on a predetermined SWCC model for parameter estimation. However, the selection of SWCC functions heavily relies on engineering judgement, which may be subjective and biased. Moreover, the estimation of multiple governing parameters for a preselected function form from limited site-specific data is a nontrivial task, particularly for inexperienced engineering practitioners. To explicitly address this challenge, this study proposes an ensemble learning framework that leverages physics-informed neural networks (PINN) for parameter estimation. Multiple representative SWCCs following different function forms are compiled, providing flexible learning bases to construct arbitrary SWCC. For a specific slope, the most compatible basis combination is adaptively selected based on limited site-specific measurements before being mobilized for forward predictions of hydraulic behavior. The proposed method is illustrated through a hypothetical example and a real slope project at Jalan Kukoh, Singapore. Results indicate that the ensemble learning framework can accurately estimate SWCC functions and the associated pore pressure distributions from limited measurements in a data-driven and physics-informed manner. The robustness of the method has also been demonstrated through a series of sensitivity analyses, showcasing the capability of PINN for unsaturated hydraulic seepage modelling and SWCC estimation during rainfall conditions.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.