Data analytics for real-world data integration in TKI-treated NSCLC patients using electronic health records

L. Mazzeo , F. Corso , P. Baili , F. Scotti , V. Torri , M. Ganzinelli , V. Mišković , R. Leporati , L. Provenzano , A. Spagnoletti , C. Silvestri , C. Giani , C. Cavalli , R.M. di Mauro , M. Meazza Prina , C. Proto , M. Brambilla , M. Occhipinti , S. Manglaviti , T. Beninato , A. Prelaj
{"title":"Data analytics for real-world data integration in TKI-treated NSCLC patients using electronic health records","authors":"L. Mazzeo ,&nbsp;F. Corso ,&nbsp;P. Baili ,&nbsp;F. Scotti ,&nbsp;V. Torri ,&nbsp;M. Ganzinelli ,&nbsp;V. Mišković ,&nbsp;R. Leporati ,&nbsp;L. Provenzano ,&nbsp;A. Spagnoletti ,&nbsp;C. Silvestri ,&nbsp;C. Giani ,&nbsp;C. Cavalli ,&nbsp;R.M. di Mauro ,&nbsp;M. Meazza Prina ,&nbsp;C. Proto ,&nbsp;M. Brambilla ,&nbsp;M. Occhipinti ,&nbsp;S. Manglaviti ,&nbsp;T. Beninato ,&nbsp;A. Prelaj","doi":"10.1016/j.esmorw.2024.100109","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Real-world data (RWD) are routinely collected in clinical practice during therapeutic interventions. Data warehouses (DWHs) represent the primary source of RWD in which electronic health records (EHRs) can be rapidly analyzed via natural language processing. This study illustrates an analytic framework that systematically exploits RWD and methods to generate real-world evidence (RWE) about innovative cancer drugs. The framework has been applied to investigate real-world treatment patterns and clinical outcomes of patients with advanced non-small-cell lung cancer (aNSCLC) treated with tyrosine kinase inhibitors (TKIs).</div></div><div><h3>Materials and methods</h3><div>Data from a cohort of 190 epidermal growth factor receptor-positive mutation (EGFRm) patients with aNSCLC were retrospectively collected in an Italian cancer institute between 2014 and 2022. Patients were treated in first-line (1L) with osimertinib or other TKIs (non-osimertinib). A text-mining algorithm was implemented to retrieve RWD from EHRs. Survival endpoints were median time to treatment discontinuation (mTTD) and median overall survival (mOS) estimated with Kaplan–Meier curves. Time-dependent multivariate Cox analysis was carried out to overcome immortal time bias.</div></div><div><h3>Results</h3><div>Approximately 38% of patients received 1L osimertinib, while the remaining 62% received previous-generation TKIs. Longer mTTD [15 months; 95% confidence interval (CI) 11.9-26.4 months] was found for patients treated with 1L osimertinib compared with non-osimertinib (10 months; 95% CI 7.9-13.1 months). In multivariate analysis, osimertinib was an independent protective factor regardless of bone and brain metastases and local radiotherapy. mOS was 27 months (95% CI 21.4-39.5 months) for osimertinib versus 20.2 months (95% CI 17.6-23.1 months) for non-osimertinib.</div></div><div><h3>Conclusions</h3><div>Data analytics frameworks are useful tools to integrate RWE in cancer research and data-driven models are suitable to process large amounts of RWD. This study demonstrates that real-world treatment patterns and outcomes of TKIs are comparable with those found in both clinical trials and other real-world studies. RWE studies can support clinicians in investigating the best treatment strategy and decision makers to drive new health policies.</div></div>","PeriodicalId":100491,"journal":{"name":"ESMO Real World Data and Digital Oncology","volume":"7 ","pages":"Article 100109"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESMO Real World Data and Digital Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949820124000870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Real-world data (RWD) are routinely collected in clinical practice during therapeutic interventions. Data warehouses (DWHs) represent the primary source of RWD in which electronic health records (EHRs) can be rapidly analyzed via natural language processing. This study illustrates an analytic framework that systematically exploits RWD and methods to generate real-world evidence (RWE) about innovative cancer drugs. The framework has been applied to investigate real-world treatment patterns and clinical outcomes of patients with advanced non-small-cell lung cancer (aNSCLC) treated with tyrosine kinase inhibitors (TKIs).

Materials and methods

Data from a cohort of 190 epidermal growth factor receptor-positive mutation (EGFRm) patients with aNSCLC were retrospectively collected in an Italian cancer institute between 2014 and 2022. Patients were treated in first-line (1L) with osimertinib or other TKIs (non-osimertinib). A text-mining algorithm was implemented to retrieve RWD from EHRs. Survival endpoints were median time to treatment discontinuation (mTTD) and median overall survival (mOS) estimated with Kaplan–Meier curves. Time-dependent multivariate Cox analysis was carried out to overcome immortal time bias.

Results

Approximately 38% of patients received 1L osimertinib, while the remaining 62% received previous-generation TKIs. Longer mTTD [15 months; 95% confidence interval (CI) 11.9-26.4 months] was found for patients treated with 1L osimertinib compared with non-osimertinib (10 months; 95% CI 7.9-13.1 months). In multivariate analysis, osimertinib was an independent protective factor regardless of bone and brain metastases and local radiotherapy. mOS was 27 months (95% CI 21.4-39.5 months) for osimertinib versus 20.2 months (95% CI 17.6-23.1 months) for non-osimertinib.

Conclusions

Data analytics frameworks are useful tools to integrate RWE in cancer research and data-driven models are suitable to process large amounts of RWD. This study demonstrates that real-world treatment patterns and outcomes of TKIs are comparable with those found in both clinical trials and other real-world studies. RWE studies can support clinicians in investigating the best treatment strategy and decision makers to drive new health policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving treatment patterns and outcomes among patients with metastatic urothelial carcinoma post-avelumab maintenance approval: insights from The US Oncology Network Collaborating across sectors in service of open science, precision oncology, and patients: an overview of the AACR Project GENIE (Genomics Evidence Neoplasia Information Exchange) Biopharma Collaborative (BPC) Data analytics for real-world data integration in TKI-treated NSCLC patients using electronic health records Cardiovascular toxicities in cancer patients treated with immune checkpoint inhibitors: multicenter study using natural language processing on Belgian hospital data Human epidermal growth factor receptor 2 (HER2) expression dynamics between diagnosis and recurrence in patients with breast cancer using artificial intelligence and electronic health records: the RosHER study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1