Unveiling the amplified oxidase-mimetic activity of MnCoO nanosheets for the ultra-sensitive determination of the long-acting beta-adrenoceptor agonist indacaterol
{"title":"Unveiling the amplified oxidase-mimetic activity of MnCoO nanosheets for the ultra-sensitive determination of the long-acting beta-adrenoceptor agonist indacaterol","authors":"Amal A. El-Masry , Heba Elmansi , Nahed El-Enany","doi":"10.1016/j.talo.2025.100413","DOIUrl":null,"url":null,"abstract":"<div><div>The ability to determine indacaterol in different matrices is critical for the medication adherence assessment. In the current approach, we introduce a pioneering colorimetric detection approach for the sensitive quantitation of indacaterol using ultrathin MnCoO nanosheets with boosted oxidase-imitating properties. The nanosheets were synthesized under mild conditions through a one-step template-less simple hydrothermal process. These nanosheets demonstrated oxidase-imitating activity, enabling the change of (3,3′,5,5′-Tetramethylbenzidine ) TMB into blue-colored oxidized TMB without the need for water. Yet, the presence of indacaterol impeded this action, leading to the transformation of oxidized TMB back to colorless TMB and a subsequent reduction in blue color intensity is observed. The colorimetric reaction showed a linear correlation with indacaterol concentrations ranging from 6.0 <img> 325.0 ng/mL. This ultra sensitivity permitted reaching a detection limit down to 1.77 ng/mL. Different characterization and kinetic experiments were conducted to elucidate the underlying mechanism. Additionally, the effectiveness of the sensing platform was evaluated by measuring indacaterol levels in its pharmaceuticals. A green assessment for this approach was introduced. This well-established methodology highlights the potential of nanomaterial-based sensing technologies in pharmaceutical analysis, and related fields.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100413"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831925000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to determine indacaterol in different matrices is critical for the medication adherence assessment. In the current approach, we introduce a pioneering colorimetric detection approach for the sensitive quantitation of indacaterol using ultrathin MnCoO nanosheets with boosted oxidase-imitating properties. The nanosheets were synthesized under mild conditions through a one-step template-less simple hydrothermal process. These nanosheets demonstrated oxidase-imitating activity, enabling the change of (3,3′,5,5′-Tetramethylbenzidine ) TMB into blue-colored oxidized TMB without the need for water. Yet, the presence of indacaterol impeded this action, leading to the transformation of oxidized TMB back to colorless TMB and a subsequent reduction in blue color intensity is observed. The colorimetric reaction showed a linear correlation with indacaterol concentrations ranging from 6.0 325.0 ng/mL. This ultra sensitivity permitted reaching a detection limit down to 1.77 ng/mL. Different characterization and kinetic experiments were conducted to elucidate the underlying mechanism. Additionally, the effectiveness of the sensing platform was evaluated by measuring indacaterol levels in its pharmaceuticals. A green assessment for this approach was introduced. This well-established methodology highlights the potential of nanomaterial-based sensing technologies in pharmaceutical analysis, and related fields.