Nano-MIP based SPR sensor for tetracycline analysis in milk sample

IF 4.1 Q1 CHEMISTRY, ANALYTICAL Talanta Open Pub Date : 2025-02-04 DOI:10.1016/j.talo.2025.100417
Monireh Bakhshpour-Yücel, Melike Küçük, Elif Tümay Özer, Bilgen Osman
{"title":"Nano-MIP based SPR sensor for tetracycline analysis in milk sample","authors":"Monireh Bakhshpour-Yücel,&nbsp;Melike Küçük,&nbsp;Elif Tümay Özer,&nbsp;Bilgen Osman","doi":"10.1016/j.talo.2025.100417","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in sensor technology have enabled the detection of antibiotics in food, ensuring human safety. In this study, we developed a surface plasmon resonance (SPR) sensor based on molecularly imprinted nanoparticles (MINps) for the real-time, sensitive, and in-situ detection of tetracycline (Tc). Firstly, Tc-imprinted nanoparticles (Tc-MINps) were synthesized using microemulsion polymerization. Then, the Tc-MINps were coated onto a bare gold SPR chip to develop the Tc-MINps SPR sensor. The sensor's performance was evaluated by detecting Tc in aqueous solutions. The results demonstrated a highly selective binding of Tc to the nanocavities on the surface of the Tc-MINps SPR sensor. The relationship between Tc molecules and the SPR sensor was analyzed at 0.5–20 mg/L Tc concentrations (pH 5.0). The Langmuir isotherm model was identified as the most appropriate binding model, indicating monolayer adsorption. The selectivity of the Tc-MINps SPR sensor was investigated using oxytetracycline, ciprofloxacin, and amoxicillin due to their structural similarity. The selectivity coefficients were determined as 5.54 for oxytetracycline, 23.66 for ciprofloxacin, and 28.39 for amoxicillin. Additionally, the limit of detection (LOD) for the Tc-MINps SPR sensor for Tc analysis in milk was found to be 0.45 mg/L, while the LOD for the HPLC method was 0.55 mg/L. The developed SPR sensor is suitable for Tc detection in milk due to its advantages, such as real-time monitoring, low cost, high selectivity, and reusability.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100417"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831925000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in sensor technology have enabled the detection of antibiotics in food, ensuring human safety. In this study, we developed a surface plasmon resonance (SPR) sensor based on molecularly imprinted nanoparticles (MINps) for the real-time, sensitive, and in-situ detection of tetracycline (Tc). Firstly, Tc-imprinted nanoparticles (Tc-MINps) were synthesized using microemulsion polymerization. Then, the Tc-MINps were coated onto a bare gold SPR chip to develop the Tc-MINps SPR sensor. The sensor's performance was evaluated by detecting Tc in aqueous solutions. The results demonstrated a highly selective binding of Tc to the nanocavities on the surface of the Tc-MINps SPR sensor. The relationship between Tc molecules and the SPR sensor was analyzed at 0.5–20 mg/L Tc concentrations (pH 5.0). The Langmuir isotherm model was identified as the most appropriate binding model, indicating monolayer adsorption. The selectivity of the Tc-MINps SPR sensor was investigated using oxytetracycline, ciprofloxacin, and amoxicillin due to their structural similarity. The selectivity coefficients were determined as 5.54 for oxytetracycline, 23.66 for ciprofloxacin, and 28.39 for amoxicillin. Additionally, the limit of detection (LOD) for the Tc-MINps SPR sensor for Tc analysis in milk was found to be 0.45 mg/L, while the LOD for the HPLC method was 0.55 mg/L. The developed SPR sensor is suitable for Tc detection in milk due to its advantages, such as real-time monitoring, low cost, high selectivity, and reusability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
期刊最新文献
Nano-MIP based SPR sensor for tetracycline analysis in milk sample Quinoid to benzenoid transition-driven glutathione sensing: Dual-emission carbon dots and smartphone-based ratiometric fluorescence analysis Advanced LC-MS/MS method for selective quantification of nitrosamine impurities in Risperidone: Enhancing drug safety Sustainable and smart multi-analyte HPTLC determination of tolperisone HCl together with three pain killers using smartphone camera as a detector: Comparative study with benchtop densitometry Trace analysis method for the determination of organophosphate esters based on solid-phase extraction-UPLC-MS/MS and its application to blood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1