Quinoid to benzenoid transition-driven glutathione sensing: Dual-emission carbon dots and smartphone-based ratiometric fluorescence analysis

IF 4.1 Q1 CHEMISTRY, ANALYTICAL Talanta Open Pub Date : 2025-02-03 DOI:10.1016/j.talo.2025.100418
Al-Montaser Bellah H. Ali , Ashraf M. Mahmoud , Yousef A. Bin Jardan , Aya M. Mostafa , James Barker , Mohamed M. El-Wekil
{"title":"Quinoid to benzenoid transition-driven glutathione sensing: Dual-emission carbon dots and smartphone-based ratiometric fluorescence analysis","authors":"Al-Montaser Bellah H. Ali ,&nbsp;Ashraf M. Mahmoud ,&nbsp;Yousef A. Bin Jardan ,&nbsp;Aya M. Mostafa ,&nbsp;James Barker ,&nbsp;Mohamed M. El-Wekil","doi":"10.1016/j.talo.2025.100418","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel and sensitive method for the determination of glutathione (GSH), a crucial antioxidant and cellular protectant, using dual blue/orange-emitting carbon dots (BO<img>CDs) and phenolphthalein (PHP). The sensing system operates at pH 9.0, exploiting the unique optical properties of BO<img>CDs with emission peaks at 420 nm and 570 nm. In alkaline conditions, PHP develops a pink color that selectively quenches the 570 nm emission of the CDs while leaving the 420 nm peak unaffected. Upon introduction of GSH, the quinoid structure of PHP is converted to its benzenoid form via Michael addition, resulting in the disappearance of the pink color and subsequent restoration of the 570 nm fluorescence. This mechanism, utilized for the first time in GSH detection, offers a distinct advantage over previous methods that primarily relied on GSH's complexation capabilities. The analytical capabilities of the BO<img>CDs/PHP ratiometric probe were extensively evaluated through multiple spectroscopic methods to understand its sensing mechanism. Performance analysis revealed impressive analytical figures of merit: the method exhibited strong linearity with a correlation coefficient of 0.9985, provided sensitive detection across a broad concentration range from 0.01 to 8.0 μM, and achieved a remarkably low detection limit of 3.33 nM. The method's versatility was enhanced through the development of a dual-mode smartphone platform, enabling both colorimetric and fluorometric GSH detection. Practical validation using human serum samples demonstrated the method's robustness in complex biological matrices, achieving high recovery rates between 98.5 % and 101.0 %, confirming its suitability for real-world clinical applications. This novel strategy combines the sensitivity of ratiometric fluorescence with the convenience of smartphone-based detection, offering a promising tool for GSH monitoring in clinical and research settings.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100418"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831925000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel and sensitive method for the determination of glutathione (GSH), a crucial antioxidant and cellular protectant, using dual blue/orange-emitting carbon dots (BOCDs) and phenolphthalein (PHP). The sensing system operates at pH 9.0, exploiting the unique optical properties of BOCDs with emission peaks at 420 nm and 570 nm. In alkaline conditions, PHP develops a pink color that selectively quenches the 570 nm emission of the CDs while leaving the 420 nm peak unaffected. Upon introduction of GSH, the quinoid structure of PHP is converted to its benzenoid form via Michael addition, resulting in the disappearance of the pink color and subsequent restoration of the 570 nm fluorescence. This mechanism, utilized for the first time in GSH detection, offers a distinct advantage over previous methods that primarily relied on GSH's complexation capabilities. The analytical capabilities of the BOCDs/PHP ratiometric probe were extensively evaluated through multiple spectroscopic methods to understand its sensing mechanism. Performance analysis revealed impressive analytical figures of merit: the method exhibited strong linearity with a correlation coefficient of 0.9985, provided sensitive detection across a broad concentration range from 0.01 to 8.0 μM, and achieved a remarkably low detection limit of 3.33 nM. The method's versatility was enhanced through the development of a dual-mode smartphone platform, enabling both colorimetric and fluorometric GSH detection. Practical validation using human serum samples demonstrated the method's robustness in complex biological matrices, achieving high recovery rates between 98.5 % and 101.0 %, confirming its suitability for real-world clinical applications. This novel strategy combines the sensitivity of ratiometric fluorescence with the convenience of smartphone-based detection, offering a promising tool for GSH monitoring in clinical and research settings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
期刊最新文献
Nano-MIP based SPR sensor for tetracycline analysis in milk sample Quinoid to benzenoid transition-driven glutathione sensing: Dual-emission carbon dots and smartphone-based ratiometric fluorescence analysis Advanced LC-MS/MS method for selective quantification of nitrosamine impurities in Risperidone: Enhancing drug safety Sustainable and smart multi-analyte HPTLC determination of tolperisone HCl together with three pain killers using smartphone camera as a detector: Comparative study with benchtop densitometry Trace analysis method for the determination of organophosphate esters based on solid-phase extraction-UPLC-MS/MS and its application to blood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1