Hong-yu CHEN , Lin WANG , Feng PENG , Meng-meng SHEN , Wei HANG , Tufa Habtamu BERI , Hui-bin ZHANG , Jun ZHAO , Yun-xiao HAN , Bing-hai LÜ
{"title":"Efficient chemical mechanical polishing of W promoted by Fenton-like reaction between Cu2+ and H2O2","authors":"Hong-yu CHEN , Lin WANG , Feng PENG , Meng-meng SHEN , Wei HANG , Tufa Habtamu BERI , Hui-bin ZHANG , Jun ZHAO , Yun-xiao HAN , Bing-hai LÜ","doi":"10.1016/S1003-6326(24)66678-1","DOIUrl":null,"url":null,"abstract":"<div><div>The Fenton-like reaction between Cu<sup>2+</sup> and H<sub>2</sub>O<sub>2</sub> was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten. The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet−visible spectrophotometry, and electrochemical experiments. The passivation behavior and material removal mechanism were discussed. Results show that the use of mixed H<sub>2</sub>O<sub>2</sub>+Cu(NO<sub>3</sub>)<sub>2</sub> oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO<sub>3</sub>)<sub>2</sub> or H<sub>2</sub>O<sub>2</sub>. The increase in material removal rate is attributed to the rapid oxidation of W into WO<sub>3</sub> via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction. In addition, material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO<sub>3</sub>)<sub>2</sub>, while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.% H<sub>2</sub>O<sub>2</sub> +1.0 wt.% Cu(NO<sub>3</sub>)<sub>2</sub>.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"35 1","pages":"Pages 257-270"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666781","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The Fenton-like reaction between Cu2+ and H2O2 was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten. The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet−visible spectrophotometry, and electrochemical experiments. The passivation behavior and material removal mechanism were discussed. Results show that the use of mixed H2O2+Cu(NO3)2 oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO3)2 or H2O2. The increase in material removal rate is attributed to the rapid oxidation of W into WO3 via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction. In addition, material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO3)2, while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.% H2O2 +1.0 wt.% Cu(NO3)2.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.