Nitrogen addition alters nutrient allocation and functional traits of early spring herbaceous plants in a temperate forest

IF 3.7 2区 农林科学 Q1 FORESTRY Forest Ecology and Management Pub Date : 2025-01-31 DOI:10.1016/j.foreco.2025.122544
Guancheng Liu , Hui Wang , Guoyong Yan , Qinggui Wang , Yajuan Xing
{"title":"Nitrogen addition alters nutrient allocation and functional traits of early spring herbaceous plants in a temperate forest","authors":"Guancheng Liu ,&nbsp;Hui Wang ,&nbsp;Guoyong Yan ,&nbsp;Qinggui Wang ,&nbsp;Yajuan Xing","doi":"10.1016/j.foreco.2025.122544","DOIUrl":null,"url":null,"abstract":"<div><div>Early spring herbaceous plants play a crucial role in nutrient cycling within temperate forest ecosystems, however, whose response of nutrient absorption and allocation strategies to increased atmospheric nitrogen (N) deposition remains unclear. Based on this, we conducted a 15-year N addition field experiment with three different N treatments (0, 2.5, 5.0 g N m² yr⁻¹). We studied the effects of N addition on leaf and fine root functional traits, and allocation strategies, in seven dominant early spring herbaceous plants within a natural secondary forest. The results showed that (1) After N addition, the aboveground organs of early spring herbaceous plants exhibited a \"rapid response\" strategy, reducing leaf expansion, which lowered specific leaf area (SLA) and photosynthetic nitrogen use efficiency (PNUE) (2) The belowground organs displayed a conservative strategy, characterized by an increase in specific root length and root tissue density, while root diameter decreased. This suggests that early spring plants can enhance nutrient and water uptake capabilities by expanding root traits in high-nutrient environments. (3) Under high N conditions, early spring herbaceous plants tended to allocate more resources to aboveground organs to cope with competitive pressure, allowing them to occupy ecological niches more rapidly. (4) Early spring herbaceous plants responded to N addition through a mechanism of \"leaf dominance with root trait regulation\", altering photosynthetic efficiency to influence plant growth. However, this shift also exacerbates phosphorus limitation, which may become a critical factor limiting future growth. Overall, N addition drove a rapid resource utilization strategy in early spring herbaceous plants within nutrient-rich environments, highlighting their ecological adaptability in the context of global environmental change.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"580 ","pages":"Article 122544"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112725000520","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Early spring herbaceous plants play a crucial role in nutrient cycling within temperate forest ecosystems, however, whose response of nutrient absorption and allocation strategies to increased atmospheric nitrogen (N) deposition remains unclear. Based on this, we conducted a 15-year N addition field experiment with three different N treatments (0, 2.5, 5.0 g N m² yr⁻¹). We studied the effects of N addition on leaf and fine root functional traits, and allocation strategies, in seven dominant early spring herbaceous plants within a natural secondary forest. The results showed that (1) After N addition, the aboveground organs of early spring herbaceous plants exhibited a "rapid response" strategy, reducing leaf expansion, which lowered specific leaf area (SLA) and photosynthetic nitrogen use efficiency (PNUE) (2) The belowground organs displayed a conservative strategy, characterized by an increase in specific root length and root tissue density, while root diameter decreased. This suggests that early spring plants can enhance nutrient and water uptake capabilities by expanding root traits in high-nutrient environments. (3) Under high N conditions, early spring herbaceous plants tended to allocate more resources to aboveground organs to cope with competitive pressure, allowing them to occupy ecological niches more rapidly. (4) Early spring herbaceous plants responded to N addition through a mechanism of "leaf dominance with root trait regulation", altering photosynthetic efficiency to influence plant growth. However, this shift also exacerbates phosphorus limitation, which may become a critical factor limiting future growth. Overall, N addition drove a rapid resource utilization strategy in early spring herbaceous plants within nutrient-rich environments, highlighting their ecological adaptability in the context of global environmental change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Forest Ecology and Management
Forest Ecology and Management 农林科学-林学
CiteScore
7.50
自引率
10.80%
发文量
665
审稿时长
39 days
期刊介绍: Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world. A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers. We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include: 1. Clear connections between the ecology and management of forests; 2. Novel ideas or approaches to important challenges in forest ecology and management; 3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023); 4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript. The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.
期刊最新文献
Density-dependent selection effect of dominant species rather than species diversity increased aboveground biomass accumulation in a temperate oak forest Spruce hybrids show superior lifespan growth but intermediate response to climate stress compared to their ecologically divergent parental species Litter context shapes seed persistence of an invasive pine in Patagonia The importance of the volatile carbon fraction in estimating deadwood carbon concentrations The future is uncertain: Wind resilient forests in a changing climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1