Knowledge transferring framework for cell library characterization

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronics Journal Pub Date : 2025-02-01 DOI:10.1016/j.mejo.2024.106542
Zhengguang Tang , Cong Li , Guangxin Guo , Mingyu Ma , Hailong You , Xiaoling Lin
{"title":"Knowledge transferring framework for cell library characterization","authors":"Zhengguang Tang ,&nbsp;Cong Li ,&nbsp;Guangxin Guo ,&nbsp;Mingyu Ma ,&nbsp;Hailong You ,&nbsp;Xiaoling Lin","doi":"10.1016/j.mejo.2024.106542","DOIUrl":null,"url":null,"abstract":"<div><div>To evaluate digital circuit performance across PVT (process, voltage, and temperature) corners, standard cell library characterization requires costly simulations. Leveraging machine learning (ML) can improve the efficiency of this process. However, existing ML-based methods for cell library characterization often neglect the knowledge embedded across different timing arcs, leading to the need for extensive training data. In this paper, we propose a transfer learning (TL) framework to enhance timing characterization across multiple timing arcs. By quantifying the similarity among training tasks in the cell library using a fine-grained metric, our method enables rapid and accurate cell delay predictions through pre-training knowledge. Compared to conventional ML approaches, our TL framework improves both prediction accuracy and efficiency. Experimental results on 45 nm MOSFET and 14 nm FINFET technologies show significant error reductions of up to 80% and 67%, respectively.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"156 ","pages":"Article 106542"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124002467","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate digital circuit performance across PVT (process, voltage, and temperature) corners, standard cell library characterization requires costly simulations. Leveraging machine learning (ML) can improve the efficiency of this process. However, existing ML-based methods for cell library characterization often neglect the knowledge embedded across different timing arcs, leading to the need for extensive training data. In this paper, we propose a transfer learning (TL) framework to enhance timing characterization across multiple timing arcs. By quantifying the similarity among training tasks in the cell library using a fine-grained metric, our method enables rapid and accurate cell delay predictions through pre-training knowledge. Compared to conventional ML approaches, our TL framework improves both prediction accuracy and efficiency. Experimental results on 45 nm MOSFET and 14 nm FINFET technologies show significant error reductions of up to 80% and 67%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
期刊最新文献
Editorial Board A multi-parameter analog-front-end circuit for liquid metal flexible sensor A low-jitter charge-pumped PLL for LiDAR detectors Lumped-parameter modeling of MEMS hydrophone for different diaphragm geometries A fully-integrated VCO-based analog-assisted-digital low-dropout regulator with feed-forward PSR enhancement for energy-harvesting wireless sensor node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1