A pig behavior-tracking method based on a multi-channel high-efficiency attention mechanism

Qifeng Li , Zhenyuan Zhuo , Ronghua Gao , Rong Wang , Na Zhang , Yan Shi , Tonghui Wu , Weihong Ma
{"title":"A pig behavior-tracking method based on a multi-channel high-efficiency attention mechanism","authors":"Qifeng Li ,&nbsp;Zhenyuan Zhuo ,&nbsp;Ronghua Gao ,&nbsp;Rong Wang ,&nbsp;Na Zhang ,&nbsp;Yan Shi ,&nbsp;Tonghui Wu ,&nbsp;Weihong Ma","doi":"10.1016/j.agrcom.2024.100062","DOIUrl":null,"url":null,"abstract":"<div><div>Given that the pig behavior reflects their health status, continuous and precise monitoring of behavior is important for effective health management and welfare protection. To mitigate potential tracking failures during analysis of video footage, we introduced a novel multi-target pig tracking method that consisted of detection and tracking components. The detection model was enhanced with an efficient attention mechanism and a Cross Stage Partial Darknet backbone network, which significantly improved detection accuracy. The tracking component used the Bytetrack algorithm to accurately track the movement trajectories of individual pigs. Together, these components were combined into the Dual-YOLOX-Tiny-ByteTrack (DYTB) model, which demonstrated superior performance in automatic monitoring of pig behaviors compared to previously published approaches. We established multi-object pig tracking datasets with 180,321 images to evaluate this method. The DYTB method achieved a pig detection accuracy of 98.3% and tracking accuracies of 95.3% and 97.1%. Compared to the YOLOX-Tiny-ByteTrack base model, DYTB showed a 3.4% improvement in multiple object tracking accuracy, making it a robust method for non-contact, intelligent monitoring of pig health and contributing to advances in precision livestock farming.</div></div>","PeriodicalId":100065,"journal":{"name":"Agriculture Communications","volume":"2 4","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949798124000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given that the pig behavior reflects their health status, continuous and precise monitoring of behavior is important for effective health management and welfare protection. To mitigate potential tracking failures during analysis of video footage, we introduced a novel multi-target pig tracking method that consisted of detection and tracking components. The detection model was enhanced with an efficient attention mechanism and a Cross Stage Partial Darknet backbone network, which significantly improved detection accuracy. The tracking component used the Bytetrack algorithm to accurately track the movement trajectories of individual pigs. Together, these components were combined into the Dual-YOLOX-Tiny-ByteTrack (DYTB) model, which demonstrated superior performance in automatic monitoring of pig behaviors compared to previously published approaches. We established multi-object pig tracking datasets with 180,321 images to evaluate this method. The DYTB method achieved a pig detection accuracy of 98.3% and tracking accuracies of 95.3% and 97.1%. Compared to the YOLOX-Tiny-ByteTrack base model, DYTB showed a 3.4% improvement in multiple object tracking accuracy, making it a robust method for non-contact, intelligent monitoring of pig health and contributing to advances in precision livestock farming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing field soil moisture content monitoring using laboratory-based soil spectral measurements and radiative transfer models Evaluation of the impact of heat stress at flowering on spikelet fertility and grain quality in barley Transcriptional analysis of maize elite inbred line Jing24 and the function of ZmMAPKKK21 in the response to drought stress A pig behavior-tracking method based on a multi-channel high-efficiency attention mechanism Integrated omics profiles for exploring the potential mechanism underlying aroma formation in the terpenoid-rich aromatic plant Opisthopappus taihangensis and the bioactivity of its leaf essential oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1