Integrated omics profiles for exploring the potential mechanism underlying aroma formation in the terpenoid-rich aromatic plant Opisthopappus taihangensis and the bioactivity of its leaf essential oil

Maolin Liu , Yushu Li , Haixia Chen , Chunjie He , Lei Sun , Xiuhai Zhang , Zongda Xu , Hua Liu
{"title":"Integrated omics profiles for exploring the potential mechanism underlying aroma formation in the terpenoid-rich aromatic plant Opisthopappus taihangensis and the bioactivity of its leaf essential oil","authors":"Maolin Liu ,&nbsp;Yushu Li ,&nbsp;Haixia Chen ,&nbsp;Chunjie He ,&nbsp;Lei Sun ,&nbsp;Xiuhai Zhang ,&nbsp;Zongda Xu ,&nbsp;Hua Liu","doi":"10.1016/j.agrcom.2024.100061","DOIUrl":null,"url":null,"abstract":"<div><div><em>Opisthopappus taihangensis</em> (Anthemideae, Asteraceae), which is rich in bioactive components, produces flowers and leaves with robust fragrances. In this study, we conducted comprehensive metabolomic and transcriptomic analyses to identify changes in terpenoid metabolites and associated gene expression across various <em>O. taihangensis</em> tissues (leaves, buds, and inflorescences at the exposure, initial-bloom, and full-bloom stages). We identified 1370 metabolites using headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HS-SPME/GC–MS), 308 of which were terpenoid metabolites. The expression of terpenoid synthesis-related genes was relatively consistent with the synthesis of terpenoid metabolites at each examined developmental stage. An analysis of gene networks governing terpenoid synthesis revealed that <em>MCT</em> genes (<em>OtMCT1</em>, <em>OtMCT2</em>, and <em>OtMCT3</em>), <em>TPS</em> genes (<em>OtTPS5</em>, <em>OtTPS9</em>, and <em>OtTPS10</em>), and <em>OtISPS1</em> may be crucial for synthesizing specific metabolites in different tissues. Additionally, the essential oil extracted from leaves by water distillation showed that thujone and camphor were the predominant components. The considerable antioxidant activity of the leaf essential oil was comparable to that of vitamin C (16 ​μg/mL). Notably, its antimicrobial effects against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em> growth were greater than those of ampicillin and vancomycin at the same concentrations. Scanning electron microscopy images indicated that the leaf essential oil significantly disrupted bacterial cell structures. This study thoroughly analyzed the network of genes regulating terpenoid metabolites in different <em>O. taihangensis</em> tissues, and elucidated the antioxidant and antibacterial potential of the leaf essential oil, thus providing valuable insights for breeding, molecular characterization, and the potential application of <em>O. taihangensis</em> in developing useful essential oil-based natural products.</div></div>","PeriodicalId":100065,"journal":{"name":"Agriculture Communications","volume":"2 4","pages":"Article 100061"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949798124000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Opisthopappus taihangensis (Anthemideae, Asteraceae), which is rich in bioactive components, produces flowers and leaves with robust fragrances. In this study, we conducted comprehensive metabolomic and transcriptomic analyses to identify changes in terpenoid metabolites and associated gene expression across various O. taihangensis tissues (leaves, buds, and inflorescences at the exposure, initial-bloom, and full-bloom stages). We identified 1370 metabolites using headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HS-SPME/GC–MS), 308 of which were terpenoid metabolites. The expression of terpenoid synthesis-related genes was relatively consistent with the synthesis of terpenoid metabolites at each examined developmental stage. An analysis of gene networks governing terpenoid synthesis revealed that MCT genes (OtMCT1, OtMCT2, and OtMCT3), TPS genes (OtTPS5, OtTPS9, and OtTPS10), and OtISPS1 may be crucial for synthesizing specific metabolites in different tissues. Additionally, the essential oil extracted from leaves by water distillation showed that thujone and camphor were the predominant components. The considerable antioxidant activity of the leaf essential oil was comparable to that of vitamin C (16 ​μg/mL). Notably, its antimicrobial effects against Staphylococcus aureus and Escherichia coli growth were greater than those of ampicillin and vancomycin at the same concentrations. Scanning electron microscopy images indicated that the leaf essential oil significantly disrupted bacterial cell structures. This study thoroughly analyzed the network of genes regulating terpenoid metabolites in different O. taihangensis tissues, and elucidated the antioxidant and antibacterial potential of the leaf essential oil, thus providing valuable insights for breeding, molecular characterization, and the potential application of O. taihangensis in developing useful essential oil-based natural products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing field soil moisture content monitoring using laboratory-based soil spectral measurements and radiative transfer models Evaluation of the impact of heat stress at flowering on spikelet fertility and grain quality in barley Transcriptional analysis of maize elite inbred line Jing24 and the function of ZmMAPKKK21 in the response to drought stress A pig behavior-tracking method based on a multi-channel high-efficiency attention mechanism Integrated omics profiles for exploring the potential mechanism underlying aroma formation in the terpenoid-rich aromatic plant Opisthopappus taihangensis and the bioactivity of its leaf essential oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1